A data-driven approach to estimating dockless electric scooter service areas

被引:8
|
作者
Karimpour, Abolfazl [1 ]
Hosseinzadeh, Aryan [2 ]
Kluger, Robert [3 ]
机构
[1] SUNY Polytech Inst, Coll Engn, Utica, NY 13502 USA
[2] Univ Louisville, Dept Civil & Environm Engn, Louisville, KY USA
[3] Univ Louisville, Dept Civil & Environm Engn, WS Speed,Room 112, Louisville, KY 40292 USA
关键词
Dockless electric scooters; E-scooter service area; OD trip data; Agglomerative hierarchical clustering; algorithm; Convex hull algorithm; MEASURING SPATIAL ACCESSIBILITY; PRIMARY-HEALTH-CARE; TRANSIT ACCESSIBILITY; CATCHMENT; NETWORK; ACCESS;
D O I
10.1016/j.jtrangeo.2023.103579
中图分类号
F [经济];
学科分类号
02 ;
摘要
With the surging usage of e-scooters worldwide, there is a growing interest in understanding different aspects of e-scooters trips and their impact on urban mobility. Further, the emergence of this new mode of transportation has led to questions regarding the spatial accessibility of e-scooters and understanding how the built environment and urbanism characteristics affect riders' abilities to reach certain destinations. In this study, initially, a datadriven approach was proposed to construct the service areas for dockless e-scooter using origin-destination trip data. Service areas are defined as spatial areas that riders are regularly able to reach via an e-scooter. Escooter service areas were constructed for traffic analysis zones in Louisville, KY, using agglomerative hierarchical clustering and convex hull algorithms. Then, the relationship between various built environments and urbanism characteristics and the e-scooter service areas was examined using principal component analysis and random forest regression. The results showed that percent of residential properties, length of the block, Walk Score (R), Transit Score (R), and Dining and Drinking Score contributed most to the size of the e-scooter service area. The findings of this research offer a transferable method to estimate e-scooter service areas to quantify access to goods and services. Further, the study discusses how the built environment and urbanism characteristics might affect the size of the service areas.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A data-driven optimization approach to improving maritime transport efficiency
    Yan, Ran
    Liu, Yan
    Wang, Shuaian
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2024, 180
  • [22] A data-driven optimal control approach for solution purification process
    Sun, Bei
    He, Mingfang
    Wang, Yalin
    Gui, Weihua
    Yang, Chunhua
    Zhu, Quanmin
    JOURNAL OF PROCESS CONTROL, 2018, 68 : 171 - 185
  • [23] A data-driven approach to solving the container relocation problem with uncertainties
    Zhang, Zhanluo
    Tan, Kok Choon
    Qin, Wei
    Chew, Ek Peng
    Li, Yan
    ADVANCED ENGINEERING INFORMATICS, 2025, 65
  • [24] A data-driven approach for mixed-case palletization with support
    de Carvalho, Paulo R., V
    Elhedhli, Samir
    OPTIMIZATION AND ENGINEERING, 2022, 23 (03) : 1587 - 1610
  • [25] Phase retrieval: A data-driven wavelet frame based approach
    Pang, Tongyao
    Li, Qingna
    Wen, Zaiwen
    Shen, Zuowei
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (03) : 971 - 1000
  • [26] Data-Driven Anomaly Detection Approach for Time-Series Streaming Data
    Zhang, Minghu
    Guo, Jianwen
    Li, Xin
    Jin, Rui
    SENSORS, 2020, 20 (19) : 1 - 17
  • [27] Perception data-driven optimization of manufacturing equipment service scheduling in sustainable manufacturing
    Xu, Wenjun
    Shao, Luyang
    Yao, Bitao
    Zhou, Zude
    Duc Truong Pham
    JOURNAL OF MANUFACTURING SYSTEMS, 2016, 41 : 86 - 101
  • [28] An integrated approach for tactical monitoring and data-driven spread forecasting of wildfires
    Valero, Mario M.
    Rios, Oriol
    Mata, Christian
    Pastor, Elsa
    Planas, Eulalia
    FIRE SAFETY JOURNAL, 2017, 91 : 835 - 844
  • [29] A data-driven traffic shockwave speed detection approach based on vehicle trajectories data
    Yang, Kaitai
    Yang, Hanyi
    Du, Lili
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 28 (06) : 971 - 987
  • [30] Data-driven approach for real-time distribution network reconfiguration
    Yin, Ziyang
    Ji, Xingquan
    Zhang, Yumin
    Liu, Qi
    Bai, Xingzhen
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (13) : 2450 - 2463