Synchronization and oscillation quenching in coupled three nonidentical Lorenz oscillators

被引:1
作者
Zhu, Hongwei [1 ]
Dai, Qionglin [1 ]
Li, Haihong [1 ]
Yang, Junzhong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2023年 / 34卷 / 11期
基金
中国国家自然科学基金;
关键词
Parameter heterogeneity; chaotic synchronization; oscillation quenching; Lorenz oscillators; CHAOS SYNCHRONIZATION; PHASE SYNCHRONIZATION; STABILITY; POPULATIONS; BEHAVIOR; RINGS;
D O I
10.1142/S0129183123501413
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we introduce the heterogeneity in the parameter s to three coupled Lorenz oscillators and investigate the effects of parameter heterogeneity on the coupling dynamics. In the presence of parameter heterogeneity, the complete synchronous state is replaced by lag synchronous state which owns the largest Lyapunov exponent exactly the same as that of the complete synchronous chaos. We find two types of oscillation quenching states induced by the parameter heterogeneity, homogeneous nontrivial equilibria and heterogeneous equilibria. In the homogeneous nontrivial equilibria, all oscillators fall onto a same nontrivial equilibrium of the isolated Lorenz oscillator, which requires low coupling strength. Depending on the coupling function, the heterogeneous equilibria may appear at intermediate coupling strength or large coupling strength. We numerically show that the transitions among lag synchronous state and different types of quenching states are always discontinuous ones. The stability diagram of the lag synchronous chaos is presented theoretically, which is compatible with those based on the synchronization error and Lyapunov exponents.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] Chimera states for coupled oscillators
    Abrams, DM
    Strogatz, SH
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (17) : 174102 - 1
  • [2] Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators
    Acebron, JA
    Spigler, R
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (11) : 2229 - 2232
  • [3] Synchronization of coupled nonidentical dynamical systems
    Acharyya, Suman
    Amritkar, R. E.
    [J]. EPL, 2012, 99 (04)
  • [4] An Z., 2009, IEEE T IND ELECTRON, V58, P2205
  • [5] AMPLITUDE RESPONSE OF COUPLED OSCILLATORS
    ARONSON, DG
    ERMENTROUT, GB
    KOPELL, N
    [J]. PHYSICA D, 1990, 41 (03): : 403 - 449
  • [6] ON THE STABILITY OF COUPLED CHEMICAL OSCILLATORS
    BARELI, K
    [J]. PHYSICA D, 1985, 14 (02): : 242 - 252
  • [7] Cluster synchronization modes in an ensemble of coupled chaotic oscillators
    Belykh, VN
    Belykh, IV
    Mosekilde, E
    [J]. PHYSICAL REVIEW E, 2001, 63 (03): : 362161 - 362164
  • [8] The synchronization of chaotic systems
    Boccaletti, S
    Kurths, J
    Osipov, G
    Valladares, DL
    Zhou, CS
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2): : 1 - 101
  • [9] Stabilizing synchrony by inhomogeneity
    Bolhasani, Ehsan
    Valizadeh, Alireza
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [10] Coupled chaotic chemical oscillators
    Dolnik, M
    Epstein, IR
    [J]. PHYSICAL REVIEW E, 1996, 54 (04): : 3361 - 3368