Direct van der Waals simulation (DVS) of phase- transforming fluids

被引:15
作者
Hu, Tianyi [1 ]
Wang, Hao [1 ]
Gomez, Hector [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, 585 Purdue Mall, W Lafayette, IN 47906 USA
基金
美国国家科学基金会;
关键词
FINITE-ELEMENT FORMULATION; COMPRESSIBLE EULER; DYNAMICS; LIQUID; FLOWS; TRANSITION; EMPHASIS; SHEET;
D O I
10.1126/sciadv.adg3007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present the method of direct van der Waals simulation (DVS) to study computationally flows with liquid -vapor phase transformations. Our approach is based on a discretization of the Navier-Stokes-Korteweg equa-tions, which couple flow dynamics with van der Waals' nonequilibrium thermodynamic theory of phase trans-formations, and opens an opportunity for first-principles simulation of a wide range of boiling and cavitating flows. The proposed algorithm enables unprecedented simulations of the Navier-Stokes-Korteweg equations involving cavitating flows at strongly under-critical conditions and O(105) Reynolds number. The proposed tech-nique provides a pathway for a fundamental understanding of phase-transforming flows with multiple applica-tions in science, engineering, and medicine.
引用
收藏
页数:12
相关论文
共 52 条
[1]   An adaptive Petrov-Galerkin formulation for the compressible Euler and Navier-Stokes equations [J].
Almeida, RC ;
Galeao, AC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 129 (1-2) :157-176
[2]  
[Anonymous], 1976, Appl. Math. Comput., DOI [DOI 10.1016/0096-3003(76)90020-5, 10.1016/0096-3003(76)90020-5]
[3]   VISCOUS EFFECTS ON POSITION OF CAVITATION SEPARATION FROM SMOOTH BODIES [J].
ARAKERI, VH .
JOURNAL OF FLUID MECHANICS, 1975, 68 (APR29) :779-&
[4]  
Balay S., 2021, Technical Report ANL-21/39-Revision 3.16
[5]  
Bazilevs Y, 2021, COMPUT MECH, V67, P57, DOI 10.1007/s00466-020-01919-w
[6]   Cavitating flow behind a backward facing step [J].
Bhatt, Anubhav ;
Ganesh, Harish ;
Ceccio, S. L. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 139
[7]  
Brennen CE, 2014, CAVITATION AND BUBBLE DYNAMICS, P1
[8]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[9]   The cavitation instability induced by the development of a re-entrant jet [J].
Callenaere, M ;
Franc, JP ;
Michel, JM ;
Riondet, M .
JOURNAL OF FLUID MECHANICS, 2001, 444 :223-256
[10]   Stabilized methods for high-speed compressible flows: toward hypersonic simulations [J].
Codoni, David ;
Moutsanidis, Georgios ;
Hsu, Ming-Chen ;
Bazilevs, Yuri ;
Johansen, Craig ;
Korobenko, Artem .
COMPUTATIONAL MECHANICS, 2021, 67 (03) :785-809