Some identities on degenerate hyperharmonic numbers

被引:10
作者
Kim, Taekyun [1 ]
San Kim, Dae [2 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
Degenerate hyperharmonic number; degenerate harmonic number; hyperharmonic number; degenerate Hurwitz zeta function;
D O I
10.1515/gmj-2022-2203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to investigate some properties, recurrence relations and identities involving degenerate hyperharmonic numbers, hyperharmonic numbers and degenerate harmonic numbers. In particular, we derive an explicit expression of the degenerate hyperharmonic numbers in terms of the degenerate harmonic numbers. This is a degenerate version of the corresponding identity representing the hyperharmonic numbers in terms of harmonic numbers due to Conway and Guy.
引用
收藏
页码:255 / 262
页数:8
相关论文
共 17 条
[1]   Values of twisted Barnes zeta functions at negative integers [J].
Bayad, A. ;
Simsek, Y. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (02) :129-137
[2]  
Carlitz L., 1956, Arch.Math, V7, P28, DOI [10.1007/BF01900520, DOI 10.1007/BF01900520]
[3]  
Carlitz L., 1979, Utilitas Math, V15, P51
[4]  
Comtet L., 1974, Advance Combinatorics: the Art of Finite and Infinite Expansions
[5]  
Conway J.H., 1996, The Book of Numbers
[6]  
Djordjevic GB, 2014, SPECIAL CLASSES POLY
[7]   On Some Degenerate Differential and Degenerate Difference Operators [J].
Kim, T. ;
Kim, D. S. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2022, 29 (01) :37-46
[8]   Some Identities on Truncated Polynomials Associated with Degenerate Bell Polynomials [J].
Kim, T. ;
Kim, D. S. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2021, 28 (03) :342-355
[9]  
Kim T., 2022, ARXIV
[10]   Representations of degenerate Hermite polynomials [J].
Kim, Taekyun ;
San Kim, Dae ;
Jang, Lee-Chae ;
Lee, Hyunseok ;
Kim, Hanyoung .
ADVANCES IN APPLIED MATHEMATICS, 2022, 139