Finite distortion curves: Continuity, differentiability and Lusin's (N) property

被引:0
作者
Hitruhin, Lauri [1 ]
Tsantaris, Athanasios [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, Helsinki 00014, Finland
基金
芬兰科学院;
关键词
finite distortion curves; finite distortion mappings; quasiregular curves; MAPPINGS;
D O I
10.4171/RMI/1471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define finite distortion !-curves and we show that for some forms ! and when the distortion function is sufficiently exponentially integrable, the map is continuous, differentiable almost everywhere and has Lusin's (N) property. This is achieved through some higher integrability results about finite distortion !-curves. It is also shown that this result is sharp both for continuity and for Lusin's (N) property. We also show that if we assume weak monotonicity for the coordinates of a finite distortion !-curve, we obtain continuity.
引用
收藏
页码:693 / 718
页数:26
相关论文
共 21 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
Astala K., 2009, ELLIPTIC PARTIAL DIF
[3]   ANALYTICAL FOUNDATIONS OF THE THEORY OF QUASICONFORMAL MAPPINGS IN RN [J].
BOJARSKI, B ;
IWANIEC, T .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02) :257-324
[4]  
DONALDSON TK, 1971, J FUNCT ANAL, V8, P52, DOI DOI 10.1016/0022-1236(71)90018-8
[5]   Mappings of finite distortion: the degree of regularity [J].
Faraco, D ;
Koskela, P ;
Zhong, X .
ADVANCES IN MATHEMATICS, 2005, 190 (02) :300-318
[6]   Signed quasiregular curves [J].
Heikkila, Susanna .
JOURNAL D ANALYSE MATHEMATIQUE, 2023, 150 (01) :37-55
[7]   Quasiregular Curves of Small Distortion in Product Manifolds [J].
Heikkila, Susanna ;
Pankka, Pekka ;
Prywes, Eden .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (01)
[8]  
Hencl S, 2014, LECT NOTES MATH, V2096, P1, DOI 10.1007/978-3-319-03173-6
[9]  
Iwaniec T, 1998, QUASICONFORMAL MAPPINGS AND ANALYSIS, P181
[10]   Mappings of BMO-distortion and Beltrami-type operators [J].
Iwaniec, T ;
Koskela, P ;
Martin, G .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 88 (1) :337-381