LSSMA: Lightweight Spectral–Spatial Neural Architecture With Multiattention Feature Extraction for Hyperspectral Image Classification

被引:2
|
作者
Ding, Shujie [1 ]
Ruan, Xiaoli [1 ]
Yang, Jing [1 ]
Sun, Jie [1 ]
Li, Shaobo [1 ]
Hu, Jianjun [2 ]
机构
[1] Guizhou Univ, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
[2] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
关键词
Feature extraction; Hyperspectral imaging; Data mining; Image classification; Computational modeling; Data models; Context modeling; Hyperspectral image (HSI) classification; lightweight; multiattention feature extraction; spectral-spatial neural network; ATTENTION NETWORK; RESIDUAL NETWORK; GENERATION;
D O I
10.1109/JSTARS.2024.3371536
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning has been utilized for hyperspectral image (HSI) classification in recent years, with notable performance improvements. In particular, convolutional neural networks (CNNs) methods have achieved major advancements in this area. However, there are some drawbacks to the existing CNN-based HSI classification approaches: 1) the lack of effective and simple feature representations in CNNs, which overlook the effects of spectral differences and spatial contextual information; 2) the classification model has an enormous network complexity as a result of its numerous training parameters and high computational requirements; and 3) the category samples in HSI data exhibit a significant long tail distribution issue, which affects the classification performance of HSI. To address these issues, we propose a lightweight spectral-spatial neural architecture with multiattention feature extraction (LSSMA) for HSI classification. The main work consists of three areas: 1) A spectral feature extraction and fusing module is created to facilitate the fusing of spectral-spatial features while reducing the number of trainable parameters and computational complexity of the model. This module uses convolutions of various kernel sizes for residual connection and feature fusion, and introduces group convolution to achieve efficient feature representation. 2) To utilize the spectral-spatial correlation of HSI data to its fullest, a multiscale convolutional activation guided attention mechanism is designed and the position attention module is referenced, which can capture spectral differences and spatial contextual relationships between ground objects. and 3) Focal loss is applied in computer vision tasks to the LSSMA model to enhance its capacity to handle category imbalance. Experimental results on four publicly available hyperspectral datasets show that the method obtains better classification performance at a lower computational cost.
引用
收藏
页码:6394 / 6413
页数:20
相关论文
共 50 条
  • [1] A Lightweight Spectral-Spatial Feature Extraction and Fusion Network for Hyperspectral Image Classification
    Chen, Linlin
    Wei, Zhihui
    Xu, Yang
    REMOTE SENSING, 2020, 12 (09)
  • [2] Multiattention Joint Convolution Feature Representation With Lightweight Transformer for Hyperspectral Image Classification
    Fang, Yu
    Ye, Qiaolin
    Sun, Le
    Zheng, Yuhui
    Wu, Zebin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction
    Ye, Zhen
    Tan, Lian
    Bai, Lin
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [4] Spatial-Spectral Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral Image Classification
    Hu, Wen-Shuai
    Li, Heng-Chao
    Pan, Lei
    Li, Wei
    Tao, Ran
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (06): : 4237 - 4250
  • [5] Discriminant Tensor Spectral-Spatial Feature Extraction for Hyperspectral Image Classification
    Zhong, Zisha
    Fan, Bin
    Duan, Jiangyong
    Wang, Lingfeng
    Ding, Kun
    Xiang, Shiming
    Pan, Chunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (05) : 1028 - 1032
  • [6] Multiscale Spatial-Spectral Feature Extraction Network for Hyperspectral Image Classification
    Ye, Zhen
    Li, Cuiling
    Liu, Qingxin
    Bai, Lin
    Fowler, James E.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4640 - 4652
  • [7] Discriminating Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Review
    Li, Ningyang
    Wang, Zhaohui
    Cheikh, Faouzi Alaya
    SENSORS, 2024, 24 (10)
  • [8] SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Quan, Yinghui
    Dong, Shuxian
    Feng, Wei
    Dauphin, Gabriel
    Zhao, Guoping
    Wang, Yong
    Xing, Mengdao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 485 - 488
  • [9] Spectral and Spatial Feature Fusion for Hyperspectral Image Classification
    Hao, Siyuan
    Xia, Yufeng
    Zhou, Lijian
    Ye, Yuanxin
    Wang, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] Spectral-Swin Transformer with Spatial Feature Extraction Enhancement for Hyperspectral Image Classification
    Peng, Yinbin
    Ren, Jiansi
    Wang, Jiamei
    Shi, Meilin
    REMOTE SENSING, 2023, 15 (10)