Three-qubit parity gate via simultaneous cross-resonance drives

被引:3
|
作者
Itoko, Toshinari [1 ]
Malekakhlagh, Moein [2 ]
Kanazawa, Naoki [1 ]
Takita, Maika [2 ]
机构
[1] IBM Res Tokyo, IBM Quantum, Tokyo, Japan
[2] IBM Thomas J Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10598 USA
关键词
QUANTUM ERROR-CORRECTION; OPTIMIZATION; CIRCUITS;
D O I
10.1103/PhysRevApplied.21.034018
中图分类号
O59 [应用物理学];
学科分类号
摘要
Native multiqubit parity gates have various potential quantum computing applications, such as entanglement creation, logical state encoding, and parity measurement in quantum error correction. Here, using simultaneous cross-resonance drives on two control qubits with a common target, we demonstrate an efficient implementation of a three-qubit parity gate. We have developed a calibration procedure based on that for the echoed cross-resonance gate. We confirm that our use of simultaneous drives leads to higher interleaved randomized benchmarking fidelities than a naive implementation with two consecutive controlled NOT gates. We also demonstrate that our simultaneous parity gates can significantly improve the parity measurement error probability for the heavy-hexagon code on an IBM Quantum processor using seven superconducting qubits with all-microwave control.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Operation and intrinsic error budget of a two-qubit cross-resonance gate
    Tripathi, Vinay
    Khezri, Mostafa
    Korotkov, Alexander N.
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [2] Calibration of a Cross-Resonance Two-Qubit Gate Between Directly Coupled Transmons
    Patterson, A. D.
    Rahamim, J.
    Tsunoda, T.
    Spring, P. A.
    Jebari, S.
    Ratter, K.
    Mergenthaler, M.
    Tancredi, G.
    Vlastakis, B.
    Esposito, M.
    Leek, P. J.
    PHYSICAL REVIEW APPLIED, 2019, 12 (06)
  • [3] Using Cryogenic CMOS Control Electronics to Enable a Two-Qubit Cross-Resonance Gate
    Underwood, Devin
    Glick, Joseph A.
    Inoue, Ken
    Frank, David J.
    Timmerwilke, John
    Pritchett, Emily
    Chakraborty, Sudipto
    Tien, Kevin
    Yeck, Mark
    Bulzacchelli, John F.
    Baks, Chris
    Robertazzi, Raphael
    Beck, Matthew
    Joshi, Rajiv V.
    Wisnieff, Dorothy
    Lekuch, Scott
    Gaucher, Brian P.
    Friedman, Daniel J.
    Rosno, Pat
    Ramirez, Daniel
    Ruedinger, Jeff
    PRX QUANTUM, 2024, 5 (01):
  • [4] Effective Hamiltonian models of the cross-resonance gate
    Magesan, Easwar
    Gambetta, Jay M.
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [5] Note on Implementation of Three-Qubit SWAP Gate
    魏海瑞
    狄尧民
    王艳
    张洁
    Communications in Theoretical Physics, 2010, 53 (01) : 78 - 82
  • [6] Three-qubit phase gate on three modes of a cavity
    Shao, Xiao-Qiang
    Wang, Hong-Fu
    Chen, Li
    Zhang, Shou
    Zhao, Yong-Fang
    Yeon, Kyu-Hwang
    OPTICS COMMUNICATIONS, 2009, 282 (23) : 4643 - 4646
  • [7] Realization of three-qubit Toffoli gate in molecules
    Du, JF
    Shi, MJ
    Zhou, XY
    Fan, YM
    Wu, JH
    Ye, BJ
    Weng, HM
    Han, RD
    CHINESE PHYSICS LETTERS, 2000, 17 (12) : 859 - 861
  • [8] Note on Implementation of Three-Qubit SWAP Gate
    Wei Hai-Rui
    Di Yao-Min
    Wang Yan
    Zhang Jie
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (01) : 78 - 82
  • [9] Two-Fluxonium Cross-Resonance Gate
    Dogan, Ebru
    Rosenstock, Dario
    Le Guevel, Loick
    Xiong, Haonan
    Mencia, Raymond A.
    Somoroff, Aaron
    Nesterov, Konstantin N.
    Vavilov, Maxim G.
    Manucharyan, Vladimir E.
    Wang, Chen
    PHYSICAL REVIEW APPLIED, 2023, 20 (02)
  • [10] Machine-learning-based three-qubit gate design for the Toffoli gate and parity check in transmon systems
    Daraeizadeh, S.
    Premaratne, S. P.
    Khammassi, N.
    Song, X.
    Perkowski, M.
    Matsuura, A. Y.
    PHYSICAL REVIEW A, 2020, 102 (01)