Influence of altered torsional stiffness through sole modification of air pressure shoes on lower extremity biomechanical behaviour during side-step cutting maneuvers
被引:1
作者:
论文数: 引用数:
h-index:
机构:
Arefin, Md Samsul
[1
,4
]
论文数: 引用数:
h-index:
机构:
Chieh, Hsiao-Feng
[1
,2
]
论文数: 引用数:
h-index:
机构:
Lin, Chien-Ju
[1
,2
]
论文数: 引用数:
h-index:
机构:
Lin, Cheng-Feng
[3
]
论文数: 引用数:
h-index:
机构:
Su, Fong-Chin
[1
]
机构:
[1] Natl Cheng Kung Univ, Dept Biomed Engn, Tainan, Taiwan
[2] Natl Cheng Kung Univ, Med Device Innovat Ctr, Tainan, Taiwan
Directional changes in cutting maneuvers are critical in sports, where shoe torsional stiffness (STS) is an important factor. Shoes are designed based on different constructions and movement patterns. Hence, it is unclear how adjustable spacers into the sole constructions of air pressure chambers (APC) affect the STS in side-step cutting. Therefore, this study investigated the effects of altered STS through adjustable sole spacers on ground reaction force (GRF) and ankle and knee joint moments in side-step cutting. Seventeen healthy recreational athletes performed side-step cutting with experimental conditions including (i) barefoot (BF), (ii) unaltered shoes (UAS): soles consisting of APC, and (iii) altered shoes (AS): modified UAS by inserting elastomeric spacers into cavities formed by APC. Mechanical and biomechanical variables were measured. Significant differences were revealed across shoe conditions for impact peak (p = 0.009) and impulse (p = 0.018) in vertical GRF, time to achieve peak braking (p = 0.004), and peak propulsion (p = 0.025) for anterior-posterior GRF in ANOVA test. No significant differences were observed in GRF peaks and impulses between UAS and AS except for a trend of differences in impact peak (p = 0.087) for vertical GRF. At the ankle and knee joint, peak ankle power absorption (p = 0.019), peak knee internal rotation moment (p = 0.042), peak knee extension moment (p = 0.001), peak knee flexion moment (0.000), peak knee power absorption (p = 0.047) showed significant difference across three shoe conditions. However, no significant differences between the UAS and AS were noticed for peak joint moments and power. Altered shoe torsional stiffness did not significantly affect the peak forces and peak ankle and knee joint moments or powers; hence sole adjustment did not influence the cutting performance. This study might be insightful in sports footwear design, and adjusting shoe torsional stiffness by sole modification might be advantageous for athletes playing sports with cutting maneuvers to reduce the risk of injuries by controlling the twisting force at the ankle that frequently happens during cutting maneuvers.
机构:
Guangzhou Sport Univ, Guangdong Prov Engn Technol Res Ctr Sports Assist, Guangzhou 510000, Peoples R China
Beijing Coll Social Adm, Minist Civil Affairs, Key Lab Prosthet & Orthot Technol, Beijing, Peoples R ChinaGuangzhou Sport Univ, Guangdong Prov Engn Technol Res Ctr Sports Assist, Guangzhou 510000, Peoples R China
Cong, Yan
Lam, Wing-Kai
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Sport Univ, Guangdong Prov Engn Technol Res Ctr Sports Assist, Guangzhou 510000, Peoples R China
Shenyang Sport Univ, Dept Kinesiol, Shenyang, Peoples R China
Li Ning China Sports Goods Co, Li Ning Sports Sci Res Ctr, Beijing, Peoples R ChinaGuangzhou Sport Univ, Guangdong Prov Engn Technol Res Ctr Sports Assist, Guangzhou 510000, Peoples R China
机构:
Hong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R China
Cong, Yan
Lam, Wing Kai
论文数: 0引用数: 0
h-index: 0
机构:
Li Ning Sports Sci Res Ctr, Beijing, Peoples R ChinaHong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R China
Lam, Wing Kai
Cheung, Jason Tak-Man
论文数: 0引用数: 0
h-index: 0
机构:
Li Ning Sports Sci Res Ctr, Beijing, Peoples R ChinaHong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R China
Cheung, Jason Tak-Man
Zhang, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R China
机构:
Guangzhou Sport Univ, Guangdong Prov Engn Technol Res Ctr Sports Assist, Guangzhou 510000, Peoples R China
Beijing Coll Social Adm, Minist Civil Affairs, Key Lab Prosthet & Orthot Technol, Beijing, Peoples R ChinaGuangzhou Sport Univ, Guangdong Prov Engn Technol Res Ctr Sports Assist, Guangzhou 510000, Peoples R China
Cong, Yan
Lam, Wing-Kai
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Sport Univ, Guangdong Prov Engn Technol Res Ctr Sports Assist, Guangzhou 510000, Peoples R China
Shenyang Sport Univ, Dept Kinesiol, Shenyang, Peoples R China
Li Ning China Sports Goods Co, Li Ning Sports Sci Res Ctr, Beijing, Peoples R ChinaGuangzhou Sport Univ, Guangdong Prov Engn Technol Res Ctr Sports Assist, Guangzhou 510000, Peoples R China
机构:
Hong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R China
Cong, Yan
Lam, Wing Kai
论文数: 0引用数: 0
h-index: 0
机构:
Li Ning Sports Sci Res Ctr, Beijing, Peoples R ChinaHong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R China
Lam, Wing Kai
Cheung, Jason Tak-Man
论文数: 0引用数: 0
h-index: 0
机构:
Li Ning Sports Sci Res Ctr, Beijing, Peoples R ChinaHong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R China
Cheung, Jason Tak-Man
Zhang, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Interdisciplinary Div Biomed Engn, Kowloon, Hong Kong, Peoples R China