Ion Transport in (Localized) High Concentration Electrolytes for Li-Based Batteries

被引:75
作者
Bergstrom, Helen K. [1 ,2 ]
Mccloskey, Bryan D. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SUPERCONCENTRATED ELECTROLYTES; TRANSFERENCE NUMBER; CHARGE-TRANSPORT; DIFFUSION; VELOCITY;
D O I
10.1021/acsenergylett.3c01662
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High concentration electrolytes (HCEs) and localized high concentration electrolytes (LHCEs) have emerged as promising candidates to enable higher energy density Li-ion batteries due to their advantageous interfacial properties that result from their unique solvent structures. Using electrophoretic NMR and electrochemical techniques, we characterize and report full transport properties, including the lithium transference numbers (t(+)) for electrolytes ranging from the conventional similar to 1 M to HCE regimes as well as for LHCE systems. We find that compared to conventional electrolytes, t(+) increases for HCEs; however the addition of diluents to LHCEs significantly decreases t(+). Viscosity effects alone cannot explain this behavior. Using Onsager transport coefficients calculated from our experiments, we demonstrate that there is more positively correlated cation-cation motion in HCEs as well as fast cation-anion ligand exchange consistent with a concerted ion-hopping mechanism. The addition of diluents to LHCEs results in more anticorrelated motion indicating a disruption of concerted cation-hopping leading to low t(+) in LHCEs.
引用
收藏
页码:373 / 380
页数:8
相关论文
共 42 条
[1]  
[Anonymous], 2015, Static Dielectric Constants of Pure Liquids and Binary Mixtures
[2]   Localized High Concentration Electrolytes for High Voltage Lithium-Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability [J].
Beltran, Saul Perez ;
Cao, Xia ;
Zhang, Ji-Guang ;
Balbuena, Perla B. .
CHEMISTRY OF MATERIALS, 2020, 32 (14) :5973-5984
[3]   Ion correlation and negative lithium transference in polyelectrolyte solutions [J].
Bergstrom, Helen K. K. ;
Fong, Kara D. D. ;
Halat, David M. M. ;
Karouta, Carl A. A. ;
Celik, Hasan C. C. ;
Reimer, Jeffrey A. A. ;
McCloskey, Bryan D. D. .
CHEMICAL SCIENCE, 2023, 14 (24) :6546-6557
[4]   Uncharted Waters: Super-Concentrated Electrolytes [J].
Borodin, Oleg ;
Self, Julian ;
Persson, Kristin A. ;
Wang, Chunsheng ;
Xu, Kang .
JOULE, 2020, 4 (01) :69-100
[5]   Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes [J].
Borodin, Oleg ;
Suo, Liumin ;
Gobet, Mallory ;
Ren, Xiaoming ;
Wang, Fei ;
Faraone, Antonio ;
Peng, Jing ;
Olguin, Marco ;
Schroeder, Marshall ;
Ding, Michael S. ;
Gobrogge, Eric ;
Cresce, Arthur von Wald ;
Munoz, Stephen ;
Dura, Joseph A. ;
Greenbaum, Steve ;
Wang, Chunsheng ;
Xu, Kang .
ACS NANO, 2017, 11 (10) :10462-10471
[6]   Review-Localized High-Concentration Electrolytes for Lithium Batteries [J].
Cao, Xia ;
Jia, Hao ;
Xu, Wu ;
Zhang, Ji-Guang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (01)
[7]  
Chen SR, 2018, ADV MATER, V30, DOI [10.1002/adma.201870144, 10.1002/adma.201706102]
[8]   How efficient is Li+ ion transport in solvate ionic liquids under anion-blocking conditions in a battery? [J].
Dong, Dengpan ;
Saelzer, Fabian ;
Roling, Bernhard ;
Bedrov, Dmitry .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (46) :29174-29183
[9]  
Einstein A., 1956, Investigations on theTheory of the Brownian Movement
[10]   Onsager Transport Coefficients and Transference Numbers in Polyelectrolyte Solutions and Polymerized Ionic Liquids [J].
Fong, Kara D. ;
Self, Julian ;
McCloskey, Bryan D. ;
Persson, Kristin A. .
MACROMOLECULES, 2020, 53 (21) :9503-9512