Advantages of transformer and its application for medical image segmentation: a survey

被引:10
作者
Pu, Qiumei [1 ]
Xi, Zuoxin [1 ,2 ]
Yin, Shuai [1 ]
Zhao, Zhe [3 ]
Zhao, Lina [2 ]
机构
[1] Minzu Univ China, Sch Informat Engn, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Inst High Energy Phys, Beijing 100049, Peoples R China
[3] Fourth Med Ctr PLA Gen Hosp, Beijing 100039, Peoples R China
关键词
Deep learning; Transformer; Medical image; Segmentation; Codec; U-NET; VESSEL SEGMENTATION; RETINAL IMAGES; ALGORITHMS; NETWORK; ARCHITECTURE; ATTENTION; SYSTEM;
D O I
10.1186/s12938-024-01212-4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
PurposeConvolution operator-based neural networks have shown great success in medical image segmentation over the past decade. The U-shaped network with a codec structure is one of the most widely used models. Transformer, a technology used in natural language processing, can capture long-distance dependencies and has been applied in Vision Transformer to achieve state-of-the-art performance on image classification tasks. Recently, researchers have extended transformer to medical image segmentation tasks, resulting in good models.MethodsThis review comprises publications selected through a Web of Science search. We focused on papers published since 2018 that applied the transformer architecture to medical image segmentation. We conducted a systematic analysis of these studies and summarized the results.ResultsTo better comprehend the benefits of convolutional neural networks and transformers, the construction of the codec and transformer modules is first explained. Second, the medical image segmentation model based on transformer is summarized. The typically used assessment markers for medical image segmentation tasks are then listed. Finally, a large number of medical segmentation datasets are described.ConclusionEven if there is a pure transformer model without any convolution operator, the sample size of medical picture segmentation still restricts the growth of the transformer, even though it can be relieved by a pretraining model. More often than not, researchers are still designing models using transformer and convolution operators.
引用
收藏
页数:22
相关论文
共 96 条
  • [1] Improving diagnosis and prognosis of lung cancer using vision transformers: a scoping review
    Ali, Hazrat
    Mohsen, Farida
    Shah, Zubair
    [J]. BMC MEDICAL IMAGING, 2023, 23 (01)
  • [2] Anping Xu, 2010, Proceedings 2010 3rd International Conference on Intelligent Networks and Intelligent Systems (ICINIS 2010), P703, DOI 10.1109/ICINIS.2010.181
  • [3] The Medical Segmentation Decathlon
    Antonelli, Michela
    Reinke, Annika
    Bakas, Spyridon
    Farahani, Keyvan
    Kopp-Schneider, Annette
    Landman, Bennett A.
    Litjens, Geert
    Menze, Bjoern
    Ronneberger, Olaf
    Summers, Ronald M.
    van Ginneken, Bram
    Bilello, Michel
    Bilic, Patrick
    Christ, Patrick F.
    Do, Richard K. G.
    Gollub, Marc J.
    Heckers, Stephan H.
    Huisman, Henkjan
    Jarnagin, William R.
    McHugo, Maureen K.
    Napel, Sandy
    Pernicka, Jennifer S. Golia
    Rhode, Kawal
    Tobon-Gomez, Catalina
    Vorontsov, Eugene
    Meakin, James A.
    Ourselin, Sebastien
    Wiesenfarth, Manuel
    Arbelaez, Pablo
    Bae, Byeonguk
    Chen, Sihong
    Daza, Laura
    Feng, Jianjiang
    He, Baochun
    Isensee, Fabian
    Ji, Yuanfeng
    Jia, Fucang
    Kim, Ildoo
    Maier-Hein, Klaus
    Merhof, Dorit
    Pai, Akshay
    Park, Beomhee
    Perslev, Mathias
    Rezaiifar, Ramin
    Rippel, Oliver
    Sarasua, Ignacio
    Shen, Wei
    Son, Jaemin
    Wachinger, Christian
    Wang, Liansheng
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [4] A survey of Transformer applications for histopathological image analysis: New developments and future directions
    Atabansi, Chukwuemeka Clinton
    Nie, Jing
    Liu, Haijun
    Song, Qianqian
    Yan, Lingfeng
    Zhou, Xichuan
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2023, 22 (01)
  • [5] Advances in medical image analysis with vision Transformers: A review
    Azad, Reza
    Kazerouni, Amirhossein
    Heidari, Moein
    Aghdam, Ehsan Khodapanah
    Molaei, Amirali
    Jia, Yiwei
    Jose, Abin
    Roy, Rijo
    Merhof, Dorit
    [J]. MEDICAL IMAGE ANALYSIS, 2024, 91
  • [6] Ba Jimmy Lei, 2016, arXiv
  • [7] Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
    Bernard, Olivier
    Lalande, Alain
    Zotti, Clement
    Cervenansky, Frederick
    Yang, Xin
    Heng, Pheng-Ann
    Cetin, Irem
    Lekadir, Karim
    Camara, Oscar
    Gonzalez Ballester, Miguel Angel
    Sanroma, Gerard
    Napel, Sandy
    Petersen, Steffen
    Tziritas, Georgios
    Grinias, Elias
    Khened, Mahendra
    Kollerathu, Varghese Alex
    Krishnamurthi, Ganapathy
    Rohe, Marc-Michel
    Pennec, Xavier
    Sermesant, Maxime
    Isensee, Fabian
    Jaeger, Paul
    Maier-Hein, Klaus H.
    Full, Peter M.
    Wolf, Ivo
    Engelhardt, Sandy
    Baumgartner, Christian F.
    Koch, Lisa M.
    Wolterink, Jelmer M.
    Isgum, Ivana
    Jang, Yeonggul
    Hong, Yoonmi
    Patravali, Jay
    Jain, Shubham
    Humbert, Olivier
    Jodoin, Pierre-Marc
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2514 - 2525
  • [8] The Liver Tumor Segmentation Benchmark (LiTS)
    Bilic, Patrick
    Christ, Patrick
    Li, Hongwei Bran
    Vorontsov, Eugene
    Ben-Cohen, Avi
    Kaissis, Georgios
    Szeskin, Adi
    Jacobs, Colin
    Mamani, Gabriel Efrain Humpire
    Chartrand, Gabriel
    Lohoefer, Fabian
    Holch, Julian Walter
    Sommer, Wieland
    Hofmann, Felix
    Hostettler, Alexandre
    Lev-Cohain, Naama
    Drozdzal, Michal
    Amitai, Michal Marianne
    Vivanti, Refael
    Sosna, Jacob
    Ezhov, Ivan
    Sekuboyina, Anjany
    Navarro, Fernando
    Kofler, Florian
    Paetzold, Johannes C.
    Shit, Suprosanna
    Hu, Xiaobin
    Lipkova, Jana
    Rempfler, Markus
    Piraud, Marie
    Kirschke, Jan
    Wiestler, Benedikt
    Zhang, Zhiheng
    Huelsemeyer, Christian
    Beetz, Marcel
    Ettlinger, Florian
    Antonelli, Michela
    Bae, Woong
    Bellver, Miriam
    Bi, Lei
    Chen, Hao
    Chlebus, Grzegorz
    Dam, Erik B.
    Dou, Qi
    Fu, Chi-Wing
    Georgescu, Bogdan
    Giro-I-Nieto, Xavier
    Gruen, Felix
    Han, Xu
    Heng, Pheng-Ann
    [J]. MEDICAL IMAGE ANALYSIS, 2023, 84
  • [9] Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm
    Buda, Mateusz
    Saha, Ashirbani
    Mazurowski, Maciej A.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 109 : 218 - 225
  • [10] Robust Vessel Segmentation in Fundus Images
    Budai, A.
    Bock, R.
    Maier, A.
    Hornegger, J.
    Michelson, G.
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013 (2013)