Iscalc: An Interactive Symbolic Computation Framework (System Description)

被引:0
作者
Zhan, Bohua [1 ,2 ]
Fan, Yuheng [3 ]
Xiong, Weiqiang [2 ]
Xu, Runqing [1 ]
机构
[1] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Natl Comp Syst Engn Res Inst China, Beijing, Peoples R China
来源
AUTOMATED DEDUCTION, CADE 29 | 2023年 / 14132卷
基金
中国国家自然科学基金;
关键词
Symbolic computation; User interface; Computer algebra; PROVER;
D O I
10.1007/978-3-031-38499-8_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The need to verify symbolic computation arises in diverse application areas. In this paper, based on earlier work on verifying computation of definite integrals in HolPy, we present a tool Iscalc for performing a variety of symbolic computations interactively, taking a middle ground in terms of easy of use and rigor between computer algebra systems and interactive theorem provers. The tool supports user-level definitions and dependency among computations, allowing construction and reuse of custom theories. Side conditions are checked on a best-effort basis. The tool is applied to highly non-trivial computations from the textbook Inside Interesting Integrals.
引用
收藏
页码:577 / 589
页数:13
相关论文
共 19 条
[1]   MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions [J].
Akbarpour, Behzad ;
Paulson, Lawrence Charles .
JOURNAL OF AUTOMATED REASONING, 2010, 44 (03) :175-205
[2]  
Astr om K. J., 2008, Feedback Systems: An Introduction for Scientists and Engineers
[3]   A Heuristic Prover for Real Inequalities [J].
Avigad, Jeremy ;
Lewis, Robert Y. ;
Roux, Cody .
JOURNAL OF AUTOMATED REASONING, 2016, 56 (03) :367-386
[4]   Analytics - An experiment in combining theorem proving and symbolic computation [J].
Bauer, A ;
Clarke, E ;
Zhao, XD .
JOURNAL OF AUTOMATED REASONING, 1998, 21 (03) :295-325
[5]  
Bohua Zhan, 2019, Formal Methods and Software Engineering. 21st International Conference on Formal Engineering Methods, ICFEM 2019. Proceedings. Lecture Notes in Computer Science (LNCS 11852), P86, DOI 10.1007/978-3-030-32409-4_6
[6]   Formalization of real analysis: a survey of proof assistants and libraries [J].
Boldo, Sylvie ;
Lelay, Catherine ;
Melquiond, Guillaume .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2016, 26 (07) :1196-1233
[7]   The Lean 4 Theorem Prover and Programming Language [J].
de Moura, Leonardo ;
Ullrich, Sebastian .
AUTOMATED DEDUCTION, CADE 28, 2021, 12699 :625-635
[8]   A Drag-and-Drop Proof Tactic [J].
Donato, Pablo ;
Strub, Pierre-Yves ;
Werner, Benjamin .
PROCEEDINGS OF THE 11TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS (CPP '22), 2022, :197-209
[9]   Verified Real Asymptotics in Isabelle/HOL [J].
Eberl, Manuel .
PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC '19), 2019, :147-154
[10]   Automated and readable simplification of trigonometric expressions [J].
Fu, Hongguang ;
Zhong, Xiuqin ;
Zeng, Zhenbing .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 44 (11-12) :1169-1177