Synergistic Retrievals of Ice in High Clouds from Elastic Backscatter Lidar, Ku-Band Radar, and Submillimeter Wave Radiometer Observations

被引:0
作者
Grecu, Mircea [1 ,2 ]
Yorksa, John E. [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20024 USA
[2] Morgan State Univ, Baltimore, MD 21251 USA
关键词
Algorithms; Lidars/lidar observations; Microwave observations; Radars/radar observations; EDDINGTON APPROXIMATION; RADIATIVE-TRANSFER; SIZE DISTRIBUTION; WATER-CONTENT; A-TRAIN; PRECIPITATION; MICROPHYSICS; NOISE;
D O I
10.1175/JTECH-D-23-0028.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this study, we investigate the synergy of elastic backscatter lidar, Ku -band radar, and submillimeter-wave radiometer measurements in the retrieval of ice from satellite observations. The synergy is analyzed through the generation of a large dataset of ice water content (IWC) profiles and simulated lidar, radar and radiometer observations. The characteristics of the instruments (frequencies, sensitivities, etc.) are set based on the expected characteristics of instruments of the Atmosphere Observing System (AOS) mission. A hold -out validation methodology is used to assess the accuracy of the IWC profiles retrieved from various combinations of observations from the three instruments. Specifically, the IWC and associated observations are randomly divided into two datasets, one for training and the other for evaluation. The training dataset is used to train the retrieval algorithm, while the evaluation dataset is used to assess the retrieval performance. The dataset of IWC profiles is derived from CloudSat reflectivity and CALIOP lidar observations. The retrieval of the ice water content IWC profiles from the computed observations is achieved in two steps. In the first step, a class, of 18 potential classes characterized by different vertical distribution of IWC, is estimated from the observations. The 18 classes are predetermined based on the k-means clustering algorithm. In the second step, the IWC profile is estimated using an ensemble Kalman smoother algorithm that uses the estimated class as a priori information. The results of the study show that the synergy of lidar, radar, and radiometer observations is significant in the retrieval of the IWC profiles. Nevertheless, it should be mentioned that this synergy was found under idealized conditions, and additional work might be required to materialize it in practice. The inclusion of the lidar backscatter observations in the retrieval process has a larger impact on the retrieval performance than the inclusion of the radar observations. As ice clouds have a significant impact on atmospheric radiative processes, this work is relevant to ongoing efforts to reduce uncertainties in climate analyses and projections.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 47 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   COSP Satellite simulation software for model assessment [J].
Bodas-Salcedo, A. ;
Webb, M. J. ;
Bony, S. ;
Chepfer, H. ;
Dufresne, J. -L. ;
Klein, S. A. ;
Zhang, Y. ;
Marchand, R. ;
Haynes, J. M. ;
Pincus, R. ;
John, V. O. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2011, 92 (08) :1023-1043
[3]   NASA'S EARTH SYSTEM OBSERVATORY- ATMOSPHERE OBSERVING SYSTEM [J].
Braun, Scott A. ;
Yorks, John ;
Thorsen, Tyler ;
Cecil, Dan ;
Kirschbaum, Dalia .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :7391-7393
[4]  
Bringi VN, 2003, J ATMOS SCI, V60, P354, DOI 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO
[5]  
2
[6]   Time-Delayed Tandem Microwave Observations of Tropical Deep Convection: Overview of the C2OMODO Mission [J].
Brogniez, Helene ;
Roca, Remy ;
Auguste, Franck ;
Chaboureau, Jean-Pierre ;
Haddad, Ziad ;
Munchak, Stephen J. ;
Li, Xiaowen ;
Bouniol, Dominique ;
Depee, Alexis ;
Fiolleau, Thomas ;
Kollias, Pavlos .
FRONTIERS IN REMOTE SENSING, 2022, 3
[7]  
BROWN PRA, 1995, J ATMOS OCEAN TECH, V12, P410, DOI 10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO
[8]  
2
[9]   Normalized particle size distribution for remote sensing application [J].
Delanoe, J. M. E. ;
Heymsfield, A. J. ;
Protat, A. ;
Bansemer, A. ;
Hogan, R. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (07) :4204-4227
[10]   A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer [J].
Delanoe, Julien ;
Hogan, Robin J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D7)