Glaucoma Progression Detection and Humphrey Visual Field Prediction Using Discriminative and Generative Vision Transformers

被引:5
作者
Tian, Ye [1 ]
Zang, Mingyang [1 ]
Sharma, Anurag [1 ]
Gu, Sophie Z. [2 ]
Leshno, Ari [2 ]
Thakoor, Kaveri A. [1 ,2 ]
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[2] Columbia Univ, Irving Med Ctr, Dept Ophthalmol, New York, NY 10032 USA
来源
OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2023 | 2023年 / 14096卷
关键词
Glaucoma; Visual Field; Vision Transformer; OPTICAL COHERENCE TOMOGRAPHY; LEARNING ALGORITHMS; RATES;
D O I
10.1007/978-3-031-44013-7_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Glaucoma is one of the top causes of blindness worldwide. Assessing its progression is critical to determine potential visual impairment and to design sound treatment plans. Standard automated perimetry tests, commonly known as visual field (VF) tests, are clinically used to evaluate the state of functional vision. To provide an accurate and automatic diagnostic tool for clinical decision making in glaucoma progression, we utilize the predictive power of artificial intelligence (AI) and propose two vision transformer (ViT)-based deep learning (DL) networks. First, we optimize a spatiotemporal ViT to classify a subject's rate of glaucoma progression (GP) using only 3 baseline VFs; we explore threshold mean deviation (MD) rate of change from -0.3 to -1.5 dB/year and achieve up to 89% GP detection accuracy. Second, we develop a VF-to-VF generation architecture via a diffusion model with a ViT backbone. The model predicts future VFs with Pointwise Mean Absolute Error (PMAE) as low as 2.15 dB for mild VF deficits and is the first to extend VF prediction up to 10 years into the future. Our models are trained and validated on our '62K+' dataset, the largest available of VFs todate including at-risk, minority populations, thus ensuring our models' generalizability. We establish our computational methods and compare testing results on the publicly available UWHVF dataset. In short, our study utilizes novel AI methods for predicting future rates and patterns of glaucoma progression in order to expedite timely treatment for better patient quality of life. The code is available at https://github.com/AI4VSLab/GP-Detection-VF-Prediction.
引用
收藏
页码:62 / 71
页数:10
相关论文
共 29 条
[1]   Racial and Ethnic Disparities in Primary Open-Angle Glaucoma Clinical Trials A Systematic Review and Meta-analysis [J].
Allison, Karen ;
Patel, Deepkumar G. ;
Greene, Leah .
JAMA NETWORK OPEN, 2021, 4 (05) :E218348
[2]   Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future [J].
Allison, Karen ;
Patel, Deepkumar ;
Alabi, Omobolanle .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2020, 12 (11)
[3]   The psychophysics of glaucoma: Improving the structure/function relationship [J].
Anderson, RS .
PROGRESS IN RETINAL AND EYE RESEARCH, 2006, 25 (01) :79-97
[4]  
Bao F, 2022, Arxiv, DOI [arXiv:2209.12152, DOI 10.48550/ARXIV.2209.12152]
[5]  
Bertasius G, 2021, PR MACH LEARN RES, V139
[6]   A Method to Measure and Predict Rates of Regional Visual Field Decay in Glaucoma [J].
Caprioli, Joseph ;
Mock, Dennis ;
Bitrian, Elena ;
Afifi, Abdelmonem A. ;
Yu, Fei ;
Nouri-Mahdavi, Kouros ;
Coleman, Anne L. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2011, 52 (07) :4765-4773
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]  
Dhariwal P, 2021, ADV NEUR IN, V34
[9]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[10]  
Fleet D., 2014, LNCS, V8689, DOI [10.1007/978-3-319-10590-1, DOI 10.1007/978-3-319-10590-1]