Determining confidence interval and asymptotic distribution for parameters of multiresponse semiparametric regression model using smoothing spline estimator

被引:7
作者
Lestari, Budi [1 ]
Chamidah, Nur [2 ,5 ]
Budiantara, I. Nyoman [3 ]
Aydin, Dursun [4 ]
机构
[1] Univ Jember, Fac Math & Nat Sci, Dept Biol, Jember 68121, Indonesia
[2] Airlangga Univ, Fac Sci & Technol, Dept Math, Surabaya 60115, Indonesia
[3] Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya 60111, Indonesia
[4] Mugla Sitki Kocman Univ, Fac Sci, Dept Stat, TR-48000 Mugla, Turkiye
[5] Airlangga Univ, Fac Sci & Technol, Res Grp Stat Modeling Life Sci, Surabaya 60115, Indonesia
关键词
Asymptotic distribution; Confidence interval; Nutritional status; Semiparametric regression; Smoothing spline;
D O I
10.1016/j.jksus.2023.102664
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The multiresponse semiparametric regression (MSR) model is a regression model with more than two response variables that are mutually correlated, and its regression function is composed of parametric and nonparametric components. The study objectives are propose a new method for estimating the MSR model using smoothing spline. Also, find the confidence interval (CI) of parameters and the distribution asymptotically of the model parameters estimator. Methods used in this study are reproducing kernel Hilbert space (RKHS) method and a developed penalized weighted least squares (PWLS), and apply pivotal quantity, central limit theorem, and theorems of Cramer-Wold and Slutsky. The results are an 100 (1-a)% CI estimate and an asymptotic normal distribution for the parameters of the MSR model. In conclusion, the estimated MSR model is a combined components estimate of parametric and nonparametric which is linear to observation, and CIs of parameters depend on t distribution and estimator of parameters is asymptotically normally distributed. Future time, this study results can be used as theoretical bases to design standard growth charts of the toddlers which can then be used to assess the nutritional status of the toddlers.& COPY; 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:7
相关论文
共 7 条
  • [1] CONFIDENCE INTERVAL OF PARAMETERS IN MULTIRESPONSE MULTIPREDICTOR SEMIPARAMETRIC REGRESSION MODEL FOR LONGITUDINAL DATA BASED ON TRUNCATED SPLINE ESTIMATOR
    Setyawati, Maunah
    Chamidah, Nur
    Kurniawan, Ardi
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [2] Consistency and Asymptotic Normality of Estimator for Parameters in Multiresponse Multipredictor Semiparametric Regression Model
    Chamidah, Nur
    Lestari, Budi
    Budiantara, I. Nyoman
    Saifudin, Toha
    Rulaningtyas, Riries
    Aryati, Aryati
    Wardani, Puspa
    Aydin, Dursun
    SYMMETRY-BASEL, 2022, 14 (02):
  • [3] New confidence interval estimator of the signal-to-noise ratio based on asymptotic sampling distribution
    Albatineh, Ahmed N.
    Boubakari, Ibrahimou
    Kibria, B. M. Golam
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (02) : 574 - 590
  • [4] Estimation of Multiresponse Multipredictor Nonparametric Regression Model Using Mixed Estimator
    Chamidah, Nur
    Lestari, Budi
    Budiantara, I. Nyoman
    Aydin, Dursun
    SYMMETRY-BASEL, 2024, 16 (04):
  • [5] Designing of Growth Reference Chart by Using Birespon Semiparametric Regression Approach Based on P-Spline Estimator
    Chamidah, N.
    Eridani
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (03): : 150 - 158
  • [6] On the asymptotic distribution of the Koenker–Bassett estimator for a parameter of the nonlinear model of regression with strongly dependent noise
    O. V. Ivanov
    I. M. Savych
    Ukrainian Mathematical Journal, 2012, 63 : 1187 - 1212
  • [7] ON THE ASYMPTOTIC DISTRIBUTION OF THE KOENKER-BASSETT ESTIMATOR FOR A PARAMETER OF THE NONLINEAR MODEL OF REGRESSION WITH STRONGLY DEPENDENT NOISE
    Ivanov, O. V.
    Savych, I. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2012, 63 (08) : 1187 - 1212