Time-series Machine Learning Approach to Sepsis Prediction in the Intensive Care Unit

被引:0
|
作者
Sears, I. [1 ]
Levy, M. M. [2 ]
Ventetuolo, C. E. [3 ]
Eickhoff, C. [4 ]
Abbasi, A. [3 ]
机构
[1] Brown Univ, Warren Alpert Med Sch, Providence, RI USA
[2] Brown Univ, Rhode Isl Hosp, Providence, RI USA
[3] Brown Univ, Med, Providence, RI USA
[4] Brown Univ, Ctr Biomed Informat, Providence, RI USA
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A6377
引用
收藏
页数:1
相关论文
共 50 条
  • [41] ENHANCED MACHINE LEARNING MODEL FOR METEO-OCEANOGRAPHIC TIME-SERIES PREDICTION
    Chirosca, Gianina
    Mihailov, Maria Emanuela
    Tomescu-Chivu, Maria Ionela
    Chirosca, Alecsandru Vladimir
    ROMANIAN JOURNAL OF PHYSICS, 2022, 67 (9-10):
  • [42] Employing local modeling in machine learning based methods for time-series prediction
    Wu, Shin-Fu
    Lee, Shie-Jue
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (01) : 341 - 354
  • [43] New approach based on machine learning for short-term mortality prediction in neonatal intensive care unit
    Kefi Z.
    Aloui K.
    Naceur M.S.
    Intl. J. Adv. Comput. Sci. Appl., 2019, 7 (583-591): : 583 - 591
  • [44] New Approach based on Machine Learning for Short-Term Mortality Prediction in Neonatal Intensive Care Unit
    Kefi, Zaineb
    Aloui, Kamel
    Naceur, Mohamed Saber
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (07) : 583 - 591
  • [45] Transferability and interpretability of the sepsis prediction models in the intensive care unit
    Qiyu Chen
    Ranran Li
    ChihChe Lin
    Chiming Lai
    Dechang Chen
    Hongping Qu
    Yaling Huang
    Wenlian Lu
    Yaoqing Tang
    Lei Li
    BMC Medical Informatics and Decision Making, 22
  • [46] Transferability and interpretability of the sepsis prediction models in the intensive care unit
    Chen, Qiyu
    Li, Ranran
    Lin, ChihChe
    Lai, Chiming
    Chen, Dechang
    Qu, Hongping
    Huang, Yaling
    Lu, Wenlian
    Tang, Yaoqing
    Li, Lei
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [47] Machine learning approach of detecting anomalies and forecasting time-series of IoT devices
    Malki, Amer
    Atlam, El-Sayed
    Gad, Ibrahim
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (11) : 8973 - 8986
  • [48] Machine Learning for Intensive Care Delirium Prediction
    Gong, Kirby D.
    Lu, Ryan
    Bergamaschi, Teya
    Sanyal, Akaash
    Guo, Joanna
    Kim, Han
    Stevens, Robert D.
    ANESTHESIA AND ANALGESIA, 2021, 132 (5S_SUPPL): : 590 - 593
  • [49] Prediction of intensive care unit admission using machine learning in patients with odontogenic infection
    Yoon, Joo-Ha
    Park, Sung Min
    JOURNAL OF THE KOREAN ASSOCIATION OF ORAL AND MAXILLOFACIAL SURGEONS, 2024, 50 (04) : 216 - 221
  • [50] Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis
    Pattharanitima, Pattharawin
    Thongprayoon, Charat
    Kaewput, Wisit
    Qureshi, Fawad
    Qureshi, Fahad
    Petnak, Tananchai
    Srivali, Narat
    Gembillo, Guido
    O'Corragain, Oisin A.
    Chesdachai, Supavit
    Vallabhajosyula, Saraschandra
    Guru, Pramod K.
    Mao, Michael A.
    Garovic, Vesna D.
    Dillon, John J.
    Cheungpasitporn, Wisit
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (21)