Automatic segmentation of abdominal aortic aneurysms from CT angiography using a context-aware cascaded U-Net

被引:15
作者
Mu, Nan [1 ]
Lyu, Zonghan [1 ]
Rezaeitaleshmahalleh, Mostafa [1 ]
Zhang, Xiaoming [2 ]
Rasmussen, Todd [2 ]
McBane, Robert [2 ]
Jiang, Jingfeng [1 ,3 ,4 ]
机构
[1] Michigan Technol Univ, Biomed Engn, Houghton, MI 49931 USA
[2] Mayo Clin, Rochester, MN 55902 USA
[3] Michigan Technol Univ, Hlth Res Inst, Inst Comp & Cybernet, Ctr Biocomp & Digital Hlth, Houghton, MI 49931 USA
[4] M&M 309,1400 Townsend Dr, Houghton, MI 49931 USA
基金
美国国家卫生研究院;
关键词
Abdominal aortic aneurysm; Context-aware; Geometrical analysis; Image segmentation; Neural network; Deep-learning; THROMBUS SEGMENTATION; MORTALITY; SOCIETY; GROWTH;
D O I
10.1016/j.compbiomed.2023.106569
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We delineate abdominal aortic aneurysms, including lumen and intraluminal thrombosis (ILT), from contrast-enhanced computed tomography angiography (CTA) data in 70 patients with complete automation. A novel context-aware cascaded U-Net configuration enables automated image segmentation. Notably, auto-context structure, in conjunction with dilated convolutions, anisotropic context module, hierarchical supervision, and a multi-class loss function, are proposed to improve the delineation of ILT in an unbalanced, low-contrast multi-class labeling problem.A quantitative analysis shows that the automated image segmentation produces comparable results with trained human users (e.g., DICE scores of 0.945 and 0.804 for lumen and ILT, respectively). Resultant morphological metrics (e.g., volume, surface area, etc.) are highly correlated to those parameters generated by trained human users. In conclusion, the proposed automated multi-class image segmentation tool has the po-tential to be further developed as a translational software tool that can be used to improve the clinical man-agement of AAAs.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Predicting abdominal aortic aneurysm growth using patient-oriented growth models with two-step Bayesian inference [J].
Akkoyun, Emrah ;
Kwon, Sebastian T. ;
Acar, Aybar C. ;
Lee, Whal ;
Baek, Seungik .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 117 (117)
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   Brain Tumor Segmentation Based on 3D Residual U-Net [J].
Bhalerao, Megh ;
Thakur, Siddhesh .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 :218-225
[4]   The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm [J].
Chaikof, Elliot L. ;
Dalman, Ronald L. ;
Eskandari, Mark K. ;
Jackson, Benjamin M. ;
Lee, W. Anthony ;
Mansour, M. Ashraf ;
Mastracci, Tara M. ;
Mell, Matthew ;
Murad, M. Hassan ;
Nguyen, Louis L. ;
Oderich, Gustavo S. ;
Patel, Madhukar S. ;
Schermerhorn, Marc L. ;
Starnes, Benjamin W. .
JOURNAL OF VASCULAR SURGERY, 2018, 67 (01) :2-+
[5]  
Chandrashekar A., 2023, Ann Surg, V277, P175
[6]   Mortality, morbidity, and costs of ruptured and elective abdominal aortic aneurysm repairs in Nova Scotia, Canada [J].
Chew, HF ;
You, CK ;
Brown, MG ;
Heisler, BE ;
Andreou, P .
ANNALS OF VASCULAR SURGERY, 2003, 17 (02) :171-179
[7]   Liver segmentation in abdominal CT images via auto-context neural network and self-supervised contour attention* [J].
Chung, Minyoung ;
Lee, Jingyu ;
Park, Sanguk ;
Lee, Chae Eun ;
Lee, Jeongjin ;
Shin, Yeong-Gil .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 113
[8]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[9]   AN ITERATIVE MODEL-CONSTRAINED GRAPH-CUT ALGORITHM FOR ABDOMINAL AORTIC ANEURYSM THROMBUS SEGMENTATION [J].
Freiman, Moti ;
Esses, Steven J. ;
Joskowicz, Leo ;
Sosna, Jacob .
2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, :672-675
[10]   Update of the Society for Vascular Surgery abdominal aortic aneurysm guidelines [J].
Gloviczki, Peter ;
Lawrence, Peter F. ;
Forbes, Thomas L. .
JOURNAL OF VASCULAR SURGERY, 2018, 67 (01) :1-1