Sobolev-Type Embeddings for Neural Network Approximation Spaces

被引:0
作者
Grohs, Philipp [1 ,2 ,3 ]
Voigtlaender, Felix [1 ,4 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Uni Vienna, Res Network Data Sci, Wahringer Str 29-S6, A-1090 Vienna, Austria
[3] Johann Radon Inst, Altenberger Str 69, A-4040 Linz, Austria
[4] Tech Univ Munich, Dept Math, Boltzmannstr 3, D-85748 Garching, Germany
关键词
Deep neural networks; Approximation spaces; Holder spaces; Embedding theorems; Optimal learning algorithms;
D O I
10.1007/s00365-022-09598-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider neural network approximation spaces that classify functions according to the rate at which they can be approximated (with error measured in L-P) by ReLU neural networks with an increasing number of coefficients, subject to bounds on the magnitude of the coefficients and the number of hidden layers. We prove embedding theorems between these spaces for different values of P. Furthermore, we derive sharp embeddings of these approximation spaces into Holder spaces. We find that, analogous to the case of classical function spaces (such as Sobolev spaces, or Besov spaces) it is possible to trade "smoothness" (i.e., approximation rate) for increased integrability. Combined with our earlier results in Grohs and Voigtlaender (Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural network approximation spaces, 2021. arXiv preprint arXiv:2104.02746), our embedding theorems imply a somewhat surprising fact related to "learning" functions from a given neural network space based on point samples: if accuracy is measured with respect to the uniform norm, then an optimal "learning" algorithm for reconstructing functions that are well approximable by ReLU neural networks is simply given by piecewise constant interpolation on a tensor product grid.
引用
收藏
页码:579 / 599
页数:21
相关论文
共 14 条
  • [1] UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION
    BARRON, AR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) : 930 - 945
  • [2] Beneventano P., 2020, ARXIV
  • [3] Berner J, 2022, MATH ASPECTS DEEP LE, V1st, P1, DOI DOI 10.1017/9781009025096.002
  • [4] Caragea Andrei, 2020, ARXIV
  • [5] Daubechies I, 2022, CONSTR APPROX, V55, P127, DOI 10.1007/s00365-021-09548-z
  • [6] Neural Network Approximation of Refinable Functions
    Daubechies, Ingrid
    De Vore, Ronald
    Dym, Nadav
    Faigenbaum-Golovin, Shira
    Kovalsky, Shahar Z.
    Lin, Kung-Chin
    Park, Josiah
    Petrova, Guergana
    Sober, Barak
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (01) : 482 - 495
  • [7] DeVore R.A., 1993, Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V303
  • [8] Neural network approximation
    DeVore, Ronald
    Hanin, Boris
    Petrova, Guergana
    [J]. ACTA NUMERICA, 2021, 30 : 327 - 444
  • [9] Deep Neural Network Approximation Theory
    Elbrachter, Dennis
    Perekrestenko, Dmytro
    Grohs, Philipp
    Boelcskei, Helmut
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (05) : 2581 - 2623
  • [10] Approximation Spaces of Deep Neural Networks
    Gribonval, Remi
    Kutyniok, Gitta
    Nielsen, Morten
    Voigtlaender, Felix
    [J]. CONSTRUCTIVE APPROXIMATION, 2022, 55 (01) : 259 - 367