The (E, E)-approximation property for Banach spaces

被引:0
作者
Kim, Ju Myung [1 ]
Zheng, Bentuo [2 ]
机构
[1] Sejong Univ, Dept Math & Stat, Seoul 05006, South Korea
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
新加坡国家研究基金会;
关键词
Banach space; unconditional basis; approximation property; COMPACT-OPERATORS; APPROXIMATION;
D O I
10.2989/16073606.2022.2143450
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given Banach space E with an 1-unconditional basis, we introduce the (E, E)-approximation property ((E, E)-AP) which is a natural generalization of the classical approximation property (AP) and the (p, p)-AP. It is shown that the AP always implies the (E, E)-AP. If E has an 1-unconditional and shrinking basis, then the (E*, E*)-AP for X* implies the (E, E)-AP for X. If in addition that the unconditional basis for E is subsymmetric, then X* has the (E*, E*)-AP implies that X has the duality (E, E)-AP.
引用
收藏
页码:2147 / 2161
页数:15
相关论文
共 7 条
[1]  
Grothendieck A., 1955, MEM AM MATH SOC, V16
[2]   Isometric factorization of weakly compact operators and the approximation property [J].
Lima, Å ;
Nygaard, O ;
Oja, E .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 119 (1) :325-348
[3]  
Lindenstrauss J., 1977, Classical Banach spaces. I, V92
[4]  
Megginson R.E., 1998, GRAD TEXT M
[5]   The strong approximation property [J].
Oja, Eve .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :407-415
[6]   A remark on the approximation of p-compact operators by finite-rank operators [J].
Oja, Eve .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) :949-952
[7]   Compact operators whose adjoints factor through subspaces of lp [J].
Sinha, DP ;
Karn, AK .
STUDIA MATHEMATICA, 2002, 150 (01) :17-33