Synergistic Protecting-Etching Synthesis of Carbon Nanoboxes@Silicon for High-Capacity Lithium-Ion Battery

被引:8
作者
Liu, Xiaofang [1 ]
Yuan, Manman [1 ,2 ]
Shi, Wenhua [1 ]
Fei, Anmin [1 ]
Tian, Yawen [1 ]
Hu, Zhi-Yi [1 ,2 ]
Chen, Lihua [1 ]
Li, Yu [1 ]
Su, Bao-Lian [1 ,3 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Nanostruct Res Ctr NRC, Wuhan 430070, Peoples R China
[3] Univ Namur, Lab Inorgan Mat Chem CMI, B-5000 Namur, Belgium
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
lithium-ion battery; silicon anode; tannicacid; synergistic protecting-etching strategy; electricalconductivity; ANODE MATERIALS; COMPOSITE ANODE; PERFORMANCE; SI; STORAGE; NANOPARTICLES; NANOSPHERES; LITHIATION; MORPHOLOGY; FRAMEWORKS;
D O I
10.1021/acsami.3c19114
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon (Si) is considered as the most likely choice for the high-capacity lithium-ion batteries owing to its ultrahigh theoretical capacity (4200 mA h g(-1)) being over 10 times than that of traditional graphite anode materials (372 mA h g(-1)). However, its widespread application is limited by problems such as a large volume expansion and low electrical conductivity. Herein, we design a hollow nitrogen-doped carbon-coated silicon (Si@Co-HNC) composite in a water-based system via a synergistic protecting-etching strategy of tannic acid. The prepared Si@Co-HNC composite can effectively mitigate the volume change of silicon and improve the electrical conductivity. Moreover, the abundant voids inside the carbon layer and the porous carbon layer accelerate the transport of electrons and lithium ions, resulting in excellent electrochemical performance. The reversible discharge capacity of 1205 mA h g(-1) can be retained after 120 cycles at a current density of 0.5 A g(-1). In particular, the discharge capacity can be maintained at 1066 mA h g-1 after 300 cycles at a high current density of 1 A g(-1). This study provides a new strategy for the design of Si-based anode materials with excellent electrical conductivity and structural stability.
引用
收藏
页码:17870 / 17880
页数:11
相关论文
共 56 条
[1]   Evaluation of basic sites of ZIFs metal organic frameworks in the Knoevenagel condensation reaction [J].
Amarante, Simonise F. ;
Freire, Maikon A. ;
Mendes, Douglas T. S. L. ;
Freitas, Lisiane S. ;
Ramos, Andre L. D. .
APPLIED CATALYSIS A-GENERAL, 2017, 548 :47-51
[2]   Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation [J].
Casimir, Anix ;
Zhang, Hanguang ;
Ogoke, Ogechi ;
Amine, Joseph C. ;
Lu, Jun ;
Wu, Gang .
NANO ENERGY, 2016, 27 :359-376
[3]   Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries [J].
Chen, Yanli ;
Hu, Yi ;
Shen, Zhen ;
Chen, Renzhong ;
He, Xia ;
Zhang, Xiangwu ;
Li, Yongqiang ;
Wu, Keshi .
JOURNAL OF POWER SOURCES, 2017, 342 :467-475
[4]   Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts [J].
Cheng, Ningyan ;
Ren, Long ;
Xu, Xun ;
Du, Yi ;
Dou, Shi Xue .
ADVANCED ENERGY MATERIALS, 2018, 8 (25)
[5]   Synthesis of embossing Si nanomesh and its application as an anode for lithium ion batteries [J].
Cho, Sanghyun ;
Jang, Ho Young ;
Jung, Insub ;
Liu, Lichun ;
Park, Sungho .
JOURNAL OF POWER SOURCES, 2017, 362 :270-277
[6]   Prussian blue/ZIF-67-derived carbon layers-encapsulated FeCo nanoparticles for hydrogen and oxygen evolution reaction [J].
Cui, Shufang ;
He, Yuanchun ;
Bo, Xiangjie .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 853
[7]   The free-standing N-doped Murray carbon framework with the engineered quasi-optimal Se/C interface for high-Se-loading Li/Na-Se batteries at elevated temperature [J].
Dong, W-D ;
Wang, C-Y ;
Li, C-F ;
Xia, F-J ;
Yu, W-B ;
Wu, L. ;
Mohamed, H. S. H. ;
Hu, Z-Y ;
Liu, J. ;
Chen, L-H ;
Li, Y. ;
Su, B-L .
MATERIALS TODAY ENERGY, 2021, 21 (21)
[8]   Atomically dispersed Co-N4C2 catalytic sites for wide-temperature Na-Se batteries [J].
Dong, Wen-Da ;
Li, Yan ;
Li, Chao-Fan ;
Hu, Zhi-Yi ;
Hsu, Liang-Ching ;
Chen, Li-Hua ;
Li, Yu ;
Lei, Aiwen ;
Su, Bao-Lian .
NANO ENERGY, 2023, 105
[9]   Construction of cobalt oxyhydroxide nanosheets with rich oxygen vacancies as high-performance lithium-ion battery anodes [J].
Fu, Yonghuan ;
Li, Liewu ;
Ye, Shenghua ;
Yang, Penggang ;
Liao, Peng ;
Ren, Xiangzhong ;
He, Chuanxin ;
Zhang, Qianling ;
Liu, Jianhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (01) :453-462
[10]   Functionalization of Silicon Nanostructures for Energy-Related Applications [J].
Fukata, Naoki ;
Subramani, Thiyagu ;
Jevasuwan, Wipakorn ;
Dutta, Mrinal ;
Bando, Yoshio .
SMALL, 2017, 13 (45)