Lithium titanate modified separators for long cycling life lithium metal anode

被引:3
作者
Yang, Dong [1 ]
You, Dan [1 ]
Deng, Bingnan [1 ]
Wang, Qian [1 ]
Ai, Wengxiang [1 ]
Ni, Zhicong [2 ]
Zeng, Yuejing [3 ]
Li, Xue [1 ]
Zhang, Yiyong [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Natl Local Joint Engn Res Ctr Lithium Ion Batterie, Key Lab Adv Batteries Mat Yunnan Prov, Kunming 650093, Peoples R China
[2] Jiangxi Univ Sci & Technol, Ganzhou 341000, Jiangxi, Peoples R China
[3] Xiamen Univ, Coll Chem & Chem Engn,State Prov Joint Engn Lab Po, Engn Res Ctr Electrochem Technol,State Key Lab Phy, Collaborat Innovat Ctr Chem Energy Mat,Minist Educ, Xiamen 361005, Peoples R China
关键词
Lithium metal anode; Lithium titanate; Diaphragm; Cyclic stability; Coating method; LI4TI5O12; ELECTROLYTE; PERFORMANCE; CHALLENGES; BATTERIES;
D O I
10.1007/s11581-023-05250-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium dendrites produced during the process of lithium metal cycling lead to poor cycle stability and safety problems, seriously hindering the practical application and commercialization of lithium metal. In this work, a facile method is used to coat lithium titanate (LTO) onto polypropylene (PP), resulting in the formation of a lithium titanate diaphragm (LTO@PP). The characteristic properties such as morphology, EIS, and electrochemical performance of the LTO@PP diaphragm are systematically investigated. The results indicate that during the first discharge cycle, Li4Ti5O12 can undergo lithiation, facilitating the transfer of Li+ ions and thereby accelerating the migration kinetics of lithium ions within the LTO@PP diaphragm. The LTO@PP-based cell can stably cycle for more than 4800 h in a Li symmetrical battery at a high current density of 3 mA cm-2, with an overvoltage as low as 6 mV. The Li | Cu battery can stably cycle for more than 380 cycles under a deposition rate of 1 mAh/cm2. Additionally, the LTO@PP diaphragm-based LFP cell displays a high capacity retention rate and excellent rate performance. Compared with current diaphragm modification methods, this work provides a promising prospect for the simple and rapid preparation of modified diaphragms.
引用
收藏
页码:5161 / 5168
页数:8
相关论文
共 27 条
[1]   Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode [J].
Binh Tran ;
Oladeji, Isaiah O. ;
Wang, Zedong ;
Calderon, Jean ;
Chai, Guangyu ;
Atherton, David ;
Zhai, Lei .
ELECTROCHIMICA ACTA, 2013, 88 :536-542
[2]   Processing Strategies to Improve Cell-Level Energy Density of Metal Sulfide Electrolyte-Based All-Solid-State Li Metal Batteries and Beyond [J].
Cao, Daxian ;
Zhao, Yuyue ;
Sun, Xiao ;
Natan, Avi ;
Wang, Ying ;
Xiang, Pengyang ;
Wang, Wei ;
Zhu, Hongli .
ACS ENERGY LETTERS, 2020, 5 (11) :3468-3489
[3]   Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes [J].
Chen, Xiang ;
Chen, Xiao-Ru ;
Hou, Ting-Zheng ;
Li, Bo-Quan ;
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhang, Qiang .
SCIENCE ADVANCES, 2019, 5 (02)
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[6]   Nanoscale Porous Framework of Lithium Titanate for Ultrafast Lithium Insertion [J].
Feckl, Johann M. ;
Fominykh, Ksenia ;
Doeblinger, Markus ;
Fattakhova-Rohlfing, Dina ;
Bein, Thomas .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (30) :7459-7463
[7]   An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode [J].
Hu, Anjun ;
Chen, Wei ;
Du, Xinchuan ;
Hu, Yin ;
Lei, Tianyu ;
Wang, Hongbo ;
Xue, Lanxin ;
Li, Yaoyao ;
Sun, He ;
Yan, Yichao ;
Long, Jianping ;
Shu, Chaozhu ;
Zhu, Jun ;
Li, Baihai ;
Wang, Xianfu ;
Xiong, Jie .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (07) :4115-4124
[8]   Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems [J].
Lin, Chuan-Fu ;
Qi, Yue ;
Gregorczyk, Keith ;
Lee, Sang Bok ;
Rubloff, Gary W. .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (01) :97-106
[9]  
Lin DC, 2017, NAT NANOTECHNOL, V12, P194, DOI [10.1038/nnano.2017.16, 10.1038/NNANO.2017.16]
[10]   Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes [J].
Liu, Yujing ;
Wu, Yuxuan ;
Zheng, Jiale ;
Wang, Yao ;
Ju, Zhijin ;
Lu, Gongxun ;
Sheng, Ouwei ;
Nai, Jianwei ;
Liu, Tiefeng ;
Zhang, Wenkui ;
Tao, Xinyong .
NANO ENERGY, 2021, 82