Bioactive Polyetheretherketone with Gelatin Hydrogel Leads to Sustained Release of Bone Morphogenetic Protein-2 and Promotes Osteogenic Differentiation

被引:8
|
作者
Zhang, Ruonan [1 ]
Jo, Jun-Ichiro [2 ]
Kanda, Ryuhei [3 ]
Nishiura, Aki [1 ]
Hashimoto, Yoshiya [2 ]
Matsumoto, Naoyuki [1 ]
机构
[1] Osaka Dent Univ, Dept Orthodont, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 5731121, Japan
[2] Osaka Dent Univ, Dept Biomat, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 5731121, Japan
[3] Osaka Dent Univ, Translat Res Inst Med Innovat TRIMI, Adv Med Res Ctr, Div Creat & Integrated Med, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 5731121, Japan
关键词
Polyetheretherketone (PEEK); gelatin hydrogel; sustained release; bone morphogenetic protein (BMP)-2; osteogenic differentiation; bone tissue engineering; GROWTH-FACTOR; IN-VITRO; DEFECTS; SURFACE; PEEK; OSSEOINTEGRATION; BIOCOMPATIBILITY; FABRICATION; EXPRESSION; ADHESION;
D O I
10.3390/ijms241612741
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polyetheretherketone (PEEK) is one of the most promising implant materials for hard tissues due to its similar elastic modulus; however, usage of PEEK is still limited owing to its biological inertness and low osteoconductivity. The objective of the study was to provide PEEK with the ability to sustain the release of growth factors and the osteogenic differentiation of stem cells. The PEEK surface was sandblasted and modified with polydopamine (PDA). Moreover, successful sandblasting and PDA modification of the PEEK surface was confirmed through physicochemical characterization. The gelatin hydrogel was then chemically bound to the PEEK by adding a solution of glutaraldehyde and gelatin to the surface of the PDA-modified PEEK. The binding and degradation of the gelatin hydrogel with PEEK (GPEEK) were confirmed, and the GPEEK mineralization was observed in simulated body fluid. Sustained release of bone morphogenetic protein (BMP)-2 was observed in GPEEK. When cultured on GPEEK with BMP-2, human mesenchymal stem cells (hMSCs) exhibited osteogenic differentiation. We conclude that PEEK with a gelatin hydrogel incorporating BMP-2 is a promising substrate for bone tissue engineering.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Peptide Hydrogel for Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 In Vitro
    Wang, Dalin
    Qi, Guangyan
    Zhang, Mingcai
    Carlson, Brandon
    Gernon, Matthew
    Burton, Douglas
    Sun, Xiuzhi Susan
    Wang, Jinxi
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2024, 15 (12)
  • [2] Sustained release emphasizing recombinant human bone morphogenetic protein-2
    Winn, SR
    Uludag, H
    Hollinger, JO
    ADVANCED DRUG DELIVERY REVIEWS, 1998, 31 (03) : 303 - 318
  • [3] In Vitro Osteogenic Differentiation Enhanced by Zirconia Coated with Bone Morphogenetic Protein-2
    Kim, Eun-Cheol
    Yang, Dae Hyeok
    Lee, Deok-Won
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (02) : 998 - 1007
  • [4] Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells
    Sun, Jian
    Li, Jieyun
    Li, Chichi
    Yu, Youcheng
    MOLECULAR MEDICINE REPORTS, 2015, 12 (03) : 4230 - 4237
  • [5] Locally Controlled Diffusive Release of Bone Morphogenetic Protein-2 Using Micropatterned Gelatin Methacrylate Hydrogel Carriers
    Yi, Myong-Hee
    Lee, Ji-Eun
    Kim, Chang-Beom
    Lee, Keun-Woo
    Lee, Kwang-Ho
    BIOCHIP JOURNAL, 2020, 14 (04) : 405 - 420
  • [6] Locally Controlled Diffusive Release of Bone Morphogenetic Protein-2 Using Micropatterned Gelatin Methacrylate Hydrogel Carriers
    Myong-Hee Yi
    Ji-Eun Lee
    Chang-Beom Kim
    Keun-Woo Lee
    Kwang-Ho Lee
    BioChip Journal, 2020, 14 : 405 - 420
  • [7] Bone morphogenetic protein-2 release profile modulates bone formation in phosphorylated hydrogel
    Olthof, Maurits G. L.
    Kempen, Diederik H. R.
    Liu, Xifeng
    Dadsetan, Mahrokh
    Tryfonidou, Marianna A.
    Yaszemski, Michael J.
    Dhert, Wouter J. A.
    Lu, Lichun
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2018, 12 (06) : 1339 - 1351
  • [8] Bone Morphogenetic Protein-2 Promotes the Osteogenic Differentiation of Sheep Bone Marrow-derived Mesenchymal Stem Cells In Vitro
    Gromolak, Sandra
    Krawczenko, Agnieszka
    Antonczyk, Agnieszka
    Biezynski, Janusz
    Liszka, Bartlomiej
    Kielbowicz, Zdzislaw
    Klimczak, Aleksandra
    TRANSPLANTATION, 2019, 103 (09) : S2 - S2
  • [9] Adenovirus-mediated bone morphogenetic protein-2 promotes osteogenic differentiation in human mesenchymal stem cells in vitro
    Cao, Hong
    Sun, Zhi-Bo
    Zhang, Lei
    Qian, Wei
    Li, Chun-Yang
    Guo, Xiao-Peng
    Zhang, Ying
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2017, 14 (01) : 377 - 382
  • [10] Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum
    Xin, Tianwen
    Mao, Jiannan
    Liu, Lili
    Tang, Jincheng
    Wu, Liang
    Yu, Xiaohua
    Gu, Yong
    Cui, Wenguo
    Chen, Liang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 6840 - 6851