Determination of a Nonlinear Coefficient in a Time-Fractional Diffusion Equation

被引:2
作者
Zeki, Mustafa [1 ]
Tinaztepe, Ramazan [2 ]
Tatar, Salih [3 ]
Ulusoy, Suleyman [4 ]
Al-Hajj, Rami [1 ]
机构
[1] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
[2] Imam Abdulrahman Bin Faisal Univ, Dept Basic Sci, Deanship Preparatory Year & Supporting Studies, Dammam 34212, Ksa, Saudi Arabia
[3] Alfaisal Univ, Coll Sci & Gen Studies, Dept Math & Comp Sci, Riyadh 11533, Ksa, Saudi Arabia
[4] Amer Univ Ras Al Khaimah, Fac Arts & Sci, Dept Math & Nat Sci, Ras Al Khaymah, U Arab Emirates
关键词
fractional diffusion; inverse problem; quasi-solution; existence and uniqueness; method of lines; INVERSE SOURCE PROBLEM; POROUS-MEDIUM; RICHARDS EQUATION; BACKWARD PROBLEM; WATER TRANSPORT; RANDOM-WALKS; APPROXIMATION; INFILTRATION; UNIQUENESS;
D O I
10.3390/fractalfract7050371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study direct and inverse problems for a nonlinear time fractional diffusion equation. We prove that the direct problem has a unique weak solution and the solution depends continuously on the coefficient. Then we show that the inverse problem has a quasi-solution. The direct problem is solved by the method of lines using an operator approach. A quasi-Newton optimization method is used for the numerical solution to the inverse problem. The Tikhonov regularization is used to overcome the ill-posedness of the inverse problem. Numerical examples with noise-free and noisy data illustrate the applicability and accuracy of the proposed method to some extent.
引用
收藏
页数:19
相关论文
共 60 条
[1]   Diffusion in disordered fractals [J].
Anh, DHN ;
Hoffmann, KH ;
Seeger, S ;
Tarafdar, S .
EUROPHYSICS LETTERS, 2005, 70 (01) :109-115
[2]  
Atkinson KendallA., 1989, INTRO NUMERICAL ANAL, V2
[3]   Propagation through fractal media:: The Sierpinski gasket and the Koch curve [J].
Campos, D ;
Fort, J ;
Méndez, V .
EUROPHYSICS LETTERS, 2004, 68 (06) :769-775
[4]   AN INVERSE PROBLEM FOR A NON-LINEAR DIFFUSION EQUATION [J].
CANNON, JR ;
DUCHATEAU, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 39 (02) :272-289
[5]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[6]   Concentration-dependent diffusivity and anomalous diffusion: A magnetic resonance imaging study of water ingress in porous zeolite [J].
de Azevedo, EN ;
de Sousa, PL ;
de Souza, RE ;
Engelsberg, M ;
Miranda, MDD ;
Silva, MA .
PHYSICAL REVIEW E, 2006, 73 (01)
[7]   Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)
[8]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[9]  
Diethelm K., 1999, Forschung und Wissenschaftliches Rechnen 1998, P57
[10]  
DINARIYEV OY, 1994, PMM-J APPL MATH MEC+, V58, P755, DOI 10.1016/0021-8928(94)90150-3