Electrocoalescence Behavior of Droplets Dispersed with Na2CO3 in Oil under the Electromagnetic Synergy Field

被引:6
作者
Guo, Kai [1 ]
Liu, Xiaoya [1 ]
Du, Ling [1 ]
Lu, Yuling [2 ]
Luo, Xiaoming [2 ]
Ling, Xiao [1 ]
机构
[1] Lanzhou Univ Technol, Coll Petrochem Technol, Lanzhou 730050, Peoples R China
[2] China Univ Petr, Coll Pipeline & Civil Engn, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRIC-FIELD; COALESCENCE CHARACTERISTICS; WATER; INTERFACE; DYNAMICS; SEPARATION; EMULSION; DROPS;
D O I
10.1021/acs.jpcb.3c01217
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electromagnetic synergy is a moreeffective physical method thana single AC electric field (ACEF) to enhance oil-water separation.However, the electrocoalescence behavior of droplets dispersed withsalt ions in oil under the synergistic electromagnetic field (EMSF)still lacks research. Herein, the evolution coefficient of liquidbridge diameter (C (1)) characterizes thegrowth rate of the liquid bridge diameter, a series of Na2CO3-dispersed droplets with different ionic strengthswere prepared, and C (1) values of dropletsunder ACEF and EMSF were compared. Micro high-speed experiments revealedthat C (1) under ACEF is larger than C (1) under EMSF. In particular, when sigma =100 mu S center dot cm(-1)and E = 629.73kV center dot m(-1), C (1) underthe ACEF is 15% larger than C (1) under EMSF.Additionally, the theory of ion enrichment is put forward, which explainsthe influence of salt ions on zeta potential and total surfacepotential in EMSF. This study provides guidance for designing high-performancedevices by introducing electromagnetic synergy in water-in-oil emulsiontreatment.
引用
收藏
页码:5668 / 5675
页数:8
相关论文
共 37 条
  • [1] Influence of DC electric field upon the production of oil-in-water-in-oil double emulsions in upwards mm-scale channels at low electric field strength
    Alberini, Federico
    Dapelo, Davide
    Enjalbert, Romain
    Van Crombrugge, Yann
    Simmons, Mark J. H.
    [J]. EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 81 : 265 - 276
  • [2] Drop coalescence through planar surfaces
    Aryafar, H.
    Kavehpour, H. P.
    [J]. PHYSICS OF FLUIDS, 2006, 18 (07)
  • [3] Oscillatory motion of water droplets in kerosene above co-planar electrodes in microfluidic chips
    Beranek, Pavel
    Flittner, Rudolf
    Hrobar, Vlastimil
    Ethgen, Pauline
    Pribyl, Michal
    [J]. AIP ADVANCES, 2014, 4 (06):
  • [4] Campos-Sofia Melek, 2015, RTQ, V35, P271
  • [5] A numerical analysis of forces imposed on particles in conventional dielectrophoresis in microchannels with interdigitated electrodes
    Cao, Jun
    Cheng, Ping
    Hong, Fangjun
    [J]. JOURNAL OF ELECTROSTATICS, 2008, 66 (11-12) : 620 - 626
  • [6] Ion-Specific Effects on the Elongation Dynamics of a Nanosized Water Droplet in Applied Electric Fields
    Cao, Qianqian
    Li, Lujuan
    Huang, Fengli
    Zuo, Chuncheng
    [J]. LANGMUIR, 2017, 33 (01) : 428 - 437
  • [7] The impact of the ionic concentration on electrocoalescence of the nanodroplet driven by dielectrophoresis
    Chen, Qicheng
    Ma, Jie
    Xu, Huimin
    Zhang, Yingjin
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2019, 290
  • [8] Analysis of coalescence behavior for compressed droplets
    Choi, Sung Woong
    Lee, Dong Eon
    Lee, Woo Il
    Kim, Han Sang
    [J]. APPLIED SURFACE SCIENCE, 2017, 397 : 57 - 69
  • [9] An analysis of interdigitated electrode geometry for dielectrophoretic particle transport in micro-fluidics
    Crews, N.
    Darabi, J.
    Voglewede, P.
    Guo, F.
    Bayoumi, A.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2007, 125 (02) : 672 - 679
  • [10] The formation of a liquid bridge during the coalescence of drops
    Decent, S. P.
    Sharpe, G.
    Shaw, A. J.
    Suckling, P. M.
    [J]. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2006, 32 (06) : 717 - 738