Modelling of Deep Learning-Based Downscaling for Wave Forecasting in Coastal Area

被引:13
作者
Adytia, Didit [1 ]
Saepudin, Deni [1 ]
Tarwidi, Dede [1 ]
Pudjaprasetya, Sri Redjeki [2 ]
Husrin, Semeidi [3 ]
Sopaheluwakan, Ardhasena [4 ]
Prasetya, Gegar [5 ]
机构
[1] Telkom Univ, Sch Comp, Jalan Telekomunikasi 1 Terusan Buah Batu, Bandung 40257, Indonesia
[2] Inst Teknol Bandung, Fac Math & Nat Sci, Ind & Financial Math Res Grp, Jalan Ganesha 10, Bandung 40132, Indonesia
[3] Marine Res Ctr, Minist Marine Affairs & Fisheries Indonesia, Jakarta 14430, Indonesia
[4] Agcy Meteorol Climatol & Geophys, Ctr Appl Climate Serv, Jakarta 10720, Indonesia
[5] Indonesian Tsunami Sci Community IATsI, Jakarta 10110, Indonesia
关键词
wave forecasting; downscaling; LSTM; BiLSTM;
D O I
10.3390/w15010204
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wave prediction in a coastal area, especially with complex geometry, requires a numerical simulation with a high-resolution grid to capture wave propagation accurately. The resolution of the grid from global wave forecasting systems is usually too coarse to capture wave propagation in the coastal area. This problem is usually resolved by performing dynamic downscaling that simulates the global wave condition into a smaller domain with a high-resolution grid, which requires a high computational cost. This paper proposes a deep learning-based downscaling method for predicting a significant wave height in the coastal area from global wave forecasting data. We obtain high-resolution wave data by performing a continuous wave simulation using the SWAN model via nested simulations. The dataset is then used as the training data for the deep learning model. Here, we use the Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM) as the deep learning models. We choose two study areas, an open sea with a swell-dominated area and a rather close sea with a wind-wave-dominated area. We validate the results of the downscaling with a wave observation, which shows good results.
引用
收藏
页数:19
相关论文
共 25 条
[1]   A Deep Learning Approach for Wave Forecasting Based on a Spatially Correlated Wind Feature, with a Case Study in the Java']Java Sea, Indonesia [J].
Adytia, Didit ;
Saepudin, Deni ;
Pudjaprasetya, Sri Redjeki ;
Husrin, Semeidi ;
Sopaheluwakan, Ardhasena .
FLUIDS, 2022, 7 (01)
[2]   Nearshore wave forecasting and hindcasting by dynamical and statistical downscaling [J].
Breivik, Oyvind ;
Gusdal, Yvonne ;
Furevik, Birgitte R. ;
Aarnes, Ole Johan ;
Reistad, Magnar .
JOURNAL OF MARINE SYSTEMS, 2009, 78 :S235-S243
[3]   Statistical downscaling of seasonal wave forecasts [J].
Camus, P. ;
Herrera, S. ;
Gutierrez, J. M. ;
Losada, I. J. .
OCEAN MODELLING, 2019, 138 :1-12
[4]   Using machine learning to derive spatial wave data: A case study for a marine energy site [J].
Chen, Jiaxin ;
Pillai, Ajit C. ;
Johanning, Lars ;
Ashton, Ian .
ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 142
[5]  
Delong Chen, 2021, 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI), P80, DOI 10.1109/BDAI52447.2021.9515293
[6]   Framewise phoneme classification with bidirectional LSTM and other neural network architectures [J].
Graves, A ;
Schmidhuber, J .
NEURAL NETWORKS, 2005, 18 (5-6) :602-610
[7]  
HASSELMANN S, 1988, J PHYS OCEANOGR, V18, P1775
[8]   The ERA5 global reanalysis [J].
Hersbach, Hans ;
Bell, Bill ;
Berrisford, Paul ;
Hirahara, Shoji ;
Horanyi, Andras ;
Munoz-Sabater, Joaquin ;
Nicolas, Julien ;
Peubey, Carole ;
Radu, Raluca ;
Schepers, Dinand ;
Simmons, Adrian ;
Soci, Cornel ;
Abdalla, Saleh ;
Abellan, Xavier ;
Balsamo, Gianpaolo ;
Bechtold, Peter ;
Biavati, Gionata ;
Bidlot, Jean ;
Bonavita, Massimo ;
De Chiara, Giovanna ;
Dahlgren, Per ;
Dee, Dick ;
Diamantakis, Michail ;
Dragani, Rossana ;
Flemming, Johannes ;
Forbes, Richard ;
Fuentes, Manuel ;
Geer, Alan ;
Haimberger, Leo ;
Healy, Sean ;
Hogan, Robin J. ;
Holm, Elias ;
Janiskova, Marta ;
Keeley, Sarah ;
Laloyaux, Patrick ;
Lopez, Philippe ;
Lupu, Cristina ;
Radnoti, Gabor ;
de Rosnay, Patricia ;
Rozum, Iryna ;
Vamborg, Freja ;
Villaume, Sebastien ;
Thepaut, Jean-Noel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (730) :1999-2049
[9]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[10]   Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting [J].
Le, Xuan-Hien ;
Hung Viet Ho ;
Lee, Giha ;
Jung, Sungho .
WATER, 2019, 11 (07)