Advanced Composite Lithium Metal Anodes with 3D Frameworks: Preloading Strategies, Interfacial Optimization, and Perspectives

被引:21
作者
Cao, Jiaqi [1 ]
Qian, Guoyu [1 ]
Lu, Xueyi [1 ]
Lu, Xia [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金;
关键词
3D frameworks; electrodeposition; interfacial modification engineering; Li metal anodes; molten Li infusion; pressure-derived fabrication; POROUS CURRENT COLLECTOR; LI-METAL; DENDRITE-FREE; CONDUCTING SCAFFOLD; NANOWIRE NETWORK; ENERGY DENSITY; HIGH-CAPACITY; STABLE HOST; CU FOAM; BATTERIES;
D O I
10.1002/smll.202205653
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium (Li) metal is regarded as the most promising anode candidate for next-generation rechargeable storage systems due to its impeccable capacity and the lowest electrochemical potential. Nevertheless, the irregular dendritic Li, unstable interface, and infinite volume change, which are the intrinsic drawbacks rooted in Li metal, give a seriously negative effect on the practical commercialization for Li metal batteries. Among the numerous optimization strategies, designing a 3D framework with high specific surface area and sufficient space is a convincing way out to ameliorate the above issues. Due to the Li-free property of the 3D framework, a Li preloading process is necessary before the 3D framework that matches with the electrolyte and cathode. How to achieve homogeneous integration with Li and 3D framework is essential to determine the electrochemical performance of Li metal anode. Herein, this review overviews the recent general fabrication methods of 3D framework-based composite Li metal anode, including electrodeposition, molten Li infusion, and pressure-derived fabrication, with the focus on the underlying mechanism, design criteria, and interfacial optimization. These results can give specific perspectives for future Li metal batteries with thin thickness, low N/P ratio, lean electrolyte, and high energy density (>350 Wh Kg(-1)).
引用
收藏
页数:31
相关论文
共 50 条
[21]   ZnO nanoconfined 3D porous carbon composite microspheres to stabilize lithium nucleation/growth for high-performance lithium metal anodes [J].
Tang, Linsheng ;
Zhang, Rui ;
Zhang, Xinyue ;
Zhao, Naiqin ;
Shi, Chunsheng ;
Liu, Enzuo ;
Ma, Liying ;
Luo, Jiayan ;
He, Chunnian .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (33) :19442-19452
[22]   Electrochemical Dealloying-Enabled 3D Hierarchical Porous Cu Current Collector of Lithium Metal Anodes for Dendrite Growth Inhibition [J].
Luan, Chen ;
Chen, Lu ;
Li, Bin ;
Zhu, Lin ;
Li, Wenzhen .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) :13903-13911
[23]   Towards advanced zinc anodes by interfacial modification strategies for efficient zinc metal batteries [J].
Fan, Changchun ;
Meng, Weijia ;
Ye, Jiaye .
JOURNAL OF ENERGY CHEMISTRY, 2024, 93 :79-110
[24]   Lithiophilic V2O5 nanobelt arrays decorated 3D framework hosts for highly stable composite lithium metal anodes [J].
Huang, Gaoxu ;
Guo, Pingmei ;
Wang, Jian ;
Chen, Shengrui ;
Liang, Jiyuan ;
Tao, Runming ;
Tang, Shun ;
Zhang, Xinfang ;
Cheng, Shijie ;
Cao, Yuan-Cheng ;
Dai, Sheng .
CHEMICAL ENGINEERING JOURNAL, 2020, 384 (384)
[25]   Toward thin and stable anodes for practical lithium metal batteries: A review, strategies, and perspectives [J].
Lee, Jiyoung ;
Jeong, Seung Hyun ;
Nam, Jong Seok ;
Sagong, Mingyu ;
Ahn, Jaewan ;
Lim, Haeseong ;
Kim, Il-Doo .
ECOMAT, 2023, 5 (12)
[26]   Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries [J].
Chuanliang Wei ;
Yusheng Wang ;
Yuchan Zhang ;
Liwen Tan ;
Yi Qian ;
Yuan Tao ;
Shenglin Xiong ;
Jinkui Feng .
Nano Research, 2021, 14 :3576-3584
[27]   A 3D conducting scaffold with in-situ grown lithiophilic Ni2P nanoarrays for high stability lithium metal anodes [J].
Jiang, Huai ;
Fan, Hailin ;
Han, Zexun ;
Hong, Bo ;
Wu, Feixiang ;
Zhang, Kai ;
Zhang, Zhian ;
Fang, Jing ;
Lai, Yanqing .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :301-309
[28]   Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes [J].
Huang, Gang ;
Han, Jiuhui ;
Zhang, Fan ;
Wang, Ziqian ;
Kashani, Harrizeh ;
Watanabe, Kentaro ;
Chen, Mingwei .
ADVANCED MATERIALS, 2019, 31 (02)
[29]   Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries [J].
Wei, Chuanliang ;
Wang, Yusheng ;
Zhang, Yuchan ;
Tan, Liwen ;
Qian, Yi ;
Tao, Yuan ;
Xiong, Shenglin ;
Feng, Jinkui .
NANO RESEARCH, 2021, 14 (10) :3576-3584
[30]   3D lithiophilic arrays growing in situ on copper foils for stabilizing lithium metal anodes [J].
Du, Xin ;
Tan, Xiaoqing ;
Zhou, Yanlin ;
Xiao, Rengui ;
Ke, Xiang .
IONICS, 2024, 30 (06) :3145-3155