Advanced Composite Lithium Metal Anodes with 3D Frameworks: Preloading Strategies, Interfacial Optimization, and Perspectives

被引:21
作者
Cao, Jiaqi [1 ]
Qian, Guoyu [1 ]
Lu, Xueyi [1 ]
Lu, Xia [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金;
关键词
3D frameworks; electrodeposition; interfacial modification engineering; Li metal anodes; molten Li infusion; pressure-derived fabrication; POROUS CURRENT COLLECTOR; LI-METAL; DENDRITE-FREE; CONDUCTING SCAFFOLD; NANOWIRE NETWORK; ENERGY DENSITY; HIGH-CAPACITY; STABLE HOST; CU FOAM; BATTERIES;
D O I
10.1002/smll.202205653
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium (Li) metal is regarded as the most promising anode candidate for next-generation rechargeable storage systems due to its impeccable capacity and the lowest electrochemical potential. Nevertheless, the irregular dendritic Li, unstable interface, and infinite volume change, which are the intrinsic drawbacks rooted in Li metal, give a seriously negative effect on the practical commercialization for Li metal batteries. Among the numerous optimization strategies, designing a 3D framework with high specific surface area and sufficient space is a convincing way out to ameliorate the above issues. Due to the Li-free property of the 3D framework, a Li preloading process is necessary before the 3D framework that matches with the electrolyte and cathode. How to achieve homogeneous integration with Li and 3D framework is essential to determine the electrochemical performance of Li metal anode. Herein, this review overviews the recent general fabrication methods of 3D framework-based composite Li metal anode, including electrodeposition, molten Li infusion, and pressure-derived fabrication, with the focus on the underlying mechanism, design criteria, and interfacial optimization. These results can give specific perspectives for future Li metal batteries with thin thickness, low N/P ratio, lean electrolyte, and high energy density (>350 Wh Kg(-1)).
引用
收藏
页数:31
相关论文
共 249 条
[1]   WETTING UNDER CHEMICAL-EQUILIBRIUM AND NONEQUILIBRIUM CONDITIONS [J].
AKSAY, IA ;
HOGE, CE ;
PASK, JA .
JOURNAL OF PHYSICAL CHEMISTRY, 1974, 78 (12) :1178-1183
[2]   LI3N - PROMISING LI IONIC CONDUCTOR [J].
ALPEN, UV .
JOURNAL OF SOLID STATE CHEMISTRY, 1979, 29 (03) :379-392
[3]   Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries [J].
An, Yongling ;
Fei, Huifang ;
Zeng, Guifang ;
Xu, Xiaoyan ;
Ci, Lijie ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
NANO ENERGY, 2018, 47 :503-511
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[6]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[7]   Rationally optimized carbon fiber cloth as lithiophilic host for highly stable Li metal anodes [J].
Cao, J. ;
Xie, Y. ;
Li, W. ;
Wang, X. ;
Yang, Y. ;
Zhang, Q. ;
Guo, J. ;
Yang, C. ;
Cheng, S. ;
Zhang, C. ;
Wang, K. .
MATERIALS TODAY ENERGY, 2021, 20
[8]   Achieving Uniform Li Plating/Stripping at Ultrahigh Currents and Capacities by Optimizing 3D Nucleation Sites and Li2Se-Enriched SEI [J].
Cao, Jiaqi ;
Xie, Yonghui ;
Yang, Yang ;
Wang, Xinghui ;
Li, Wangyang ;
Zhang, Qiaoli ;
Ma, Shun ;
Cheng, Shuying ;
Lu, Bingan .
ADVANCED SCIENCE, 2022, 9 (09)
[9]   Perpendicular MXene Arrays with Periodic Interspaces toward Dendrite-Free Lithium Metal Anodes with High-Rate Capabilities [J].
Cao, Zhenjiang ;
Zhu, Qi ;
Wang, Shuai ;
Zhang, Di ;
Chen, Hao ;
Du, Zhiguo ;
Li, Bin ;
Yang, Shubin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (05)
[10]   Dendrite-Free Lithium Anodes with Ultra-Deep Stripping and Plating Properties Based on Vertically Oriented Lithium-Copper-Lithium Arrays [J].
Cao, Zhenjiang ;
Li, Bin ;
Yang, Shubin .
ADVANCED MATERIALS, 2019, 31 (29)