Norms of Dual Complex Vectors and Dual Complex Matrices

被引:1
作者
Miao, Xin-He [1 ]
Huang, Zheng-Hai [1 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300354, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual complex number; Dual complex vector; Dual complex matrix; p-norm; Operator norm;
D O I
10.1007/s42967-022-00215-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate some properties of dual complex numbers, dual complex vectors, and dual complex matrices. First, based on the magnitude of the dual complex number, we study the Young inequality, the Holder inequality, and the Minkowski inequality in the setting of dual complex numbers. Second, we define the p-norm of a dual complex vector, which is a nonnegative dual number, and show some related properties. Third, we study the properties of eigenvalues of unitary matrices and unitary triangulation of arbitrary dual complex matrices. In particular, we introduce the operator norm of dual complex matrices induced by the p-norm of dual complex vectors, and give expressions of three important operator norms of dual complex matrices.
引用
收藏
页码:1484 / 1508
页数:25
相关论文
共 14 条
  • [1] Factorization and Generalized Roots of Dual Complex Matrices with Rodrigues' Formula
    Brezov, Danail
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (02)
  • [2] CHENG H. H., 1996, 24 BIENNIAL MECH C, V2B
  • [3] Dual quaternion-based graphical SLAM
    Cheng, Jiantong
    Kim, Jonghyuk
    Jiang, Zhenyu
    Che, Wanfang
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 77 : 15 - 24
  • [4] Clifford M.A., 1871, P LOND MATH SOC, V4, P381, DOI DOI 10.1112/PLMS/S1-4.1.381
  • [5] Hand-eye calibration using dual quaternions
    Daniilidis, K
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1999, 18 (03) : 286 - 298
  • [6] Gungor M., 2019, Univ. J. Mathe. Appl, V2, P126, DOI [10.32323/ujma.587816, DOI 10.32323/UJMA.587816]
  • [7] Gunn C., 2011, GUIDE GEOMETRIC ALGE
  • [8] Matsuda G., 2014, MATH PROGR EXPRESSIV, P131, DOI DOI 10.1007/978-4-431-55007-5_17
  • [9] Linear algebra and numerical algorithms using dual numbers
    Pennestri, E.
    Stefanelli, R.
    [J]. MULTIBODY SYSTEM DYNAMICS, 2007, 18 (03) : 323 - 344
  • [10] Qi L., 2022, ARXIV