Towards a fair comparison and realistic evaluation framework of android malware detectors based on static analysis and machine learning

被引:15
|
作者
Molina-Coronado, Borja [1 ]
Mori, Usue [2 ]
Mendiburu, Alexander [1 ]
Miguel-Alonso, Jose [1 ]
机构
[1] Univ Basque Country UPV EHU, Dept Comp Architecture & Technol, Ps Manuel Lardizabal 1, Donostia San Sebastian 20018, Gipuzkoa, Spain
[2] Univ Basque Country UPV EHU, Dept Comp Sci & Artificial Intelligence, Ps Manuel Lardizabal 1, Donostia San Sebastian 20018, Gipuzkoa, Spain
关键词
Android malware detection; Machine learning; Mobile security; Experimental analysis; Static analysis; OBFUSCATION; DISCOVERY; KNOWLEDGE; MODEL;
D O I
10.1016/j.cose.2022.102996
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As in other cybersecurity areas, machine learning (ML) techniques have emerged as a promising solution to detect Android malware. In this sense, many proposals employing a variety of algorithms and feature sets have been presented to date, often reporting impresive detection performances. However, the lack of reproducibility and the absence of a standard evaluation framework make these proposals difficult to compare. In this paper, we perform an analysis of 10 influential research works on Android malware detection using a common evaluation framework. We have identified five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models and their performances. In particular, we analyze the effect of (1) the presence of duplicated samples, (2) label (goodware/greyware/malware) attribution, (3) class imbalance, (4) the presence of apps that use evasion techniques and, (5) the evolution of apps. Based on this extensive experimentation, we conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results. Our findings also highlight that it is imperative to generate realistic experimental scenarios, taking into account the aforementioned factors, to foster the rise of better ML-based Android malware detection solutions. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Android malware analysis using multiple machine learning algorithms
    Sahani, Rahul Kumar
    Anand, Madhusudan
    Tagore, Arhit Bose
    Mehrotra, Shreyash
    Tabassum, Ruksana
    Raja, S. P.
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2024, 16 (06) : 752 - 774
  • [42] Enhanced Android Malware Detection: An SVM-based Machine Learning Approach
    Han, Hyoil
    Lim, SeungJin
    Suh, Kyoungwon
    Park, Seonghyun
    Cho, Seong-je
    Park, Minkyu
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 75 - 81
  • [43] Adopting Graph-Based Machine Learning Algorithms to Classify Android Malware
    Karrar, Abdelrahman Elsharif
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (09): : 840 - 849
  • [44] Study on Android Hybrid Malware Detection Based on Machine Learning
    Kuo, Wen-Chung
    Liu, Tsung-Ping
    Wang, Chun-Cheng
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2019), 2019, : 31 - 35
  • [45] Android Malware Detection Using Category-Based Machine Learning Classifiers
    Alatwi, Huda Ali
    Oh, Tae
    Fokoue, Ernest
    Stackpole, Bill
    SIGITE'16: PROCEEDINGS OF THE 17TH ANNUAL CONFERENCE ON INFORMATION TECHNOLOGY EDUCATION, 2016, : 54 - 59
  • [46] Evaluating Machine Learning Models for Android Malware Detection - A Comparison Study
    Rana, Md. Shohel
    Gudla, Charan
    Sung, Andrew H.
    PROCEEDINGS OF 2018 VII INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2018), 2018, : 17 - 21
  • [47] MLDroid-framework for Android malware detection using machine learning techniques
    Mahindru, Arvind
    Sangal, A. L.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10) : 5183 - 5240
  • [48] GAResNet: A Transfer Learning based Framework for Android Malware Detection
    Shen, Rui
    Zhu, Hui-juan
    Li, Chang
    Wei, Hua-hui
    2023 IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH, ICKG, 2023, : 263 - 268
  • [49] Towards a Network-Based Framework for Android Malware Detection and Characterization
    Lashkari, Arash Habibi
    Kadir, Andi Fitriah A.
    Gonzalez, Hugo
    Mbah, Kenneth Fon
    Ghorbani, Ali A.
    2017 15TH ANNUAL CONFERENCE ON PRIVACY, SECURITY AND TRUST (PST), 2017, : 233 - 242
  • [50] Android Malware Detection Based on Static Analysis of Characteristic Tree
    Li, Qi
    Li, Xiaoyu
    2015 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY, 2015, : 84 - 91