Three-dimensional genome organization in immune cell fate and function

被引:33
作者
Cuartero, Sergi [1 ,2 ]
Stik, Gregoire [3 ,4 ]
Stadhouders, Ralph [5 ,6 ]
机构
[1] Josep Carreras Leukaemia Res Inst IJC, Badalona, Spain
[2] Germans Trias & Pujol Res Inst IGTP, Badalona, Spain
[3] Inst Sci & Technol BIST, Ctr Genom Regulat CRC, Barcelona, Spain
[4] Univ Pompeu Fabra UPF, Barcelona, Spain
[5] Erasmus MC, Univ Med Ctr, Dept Pulm Med, Rotterdam, Netherlands
[6] Erasmus MC, Univ Med Ctr, Dept Cell Biol, Rotterdam, Netherlands
关键词
ENHANCER-PROMOTER COMMUNICATION; CCCTC-BINDING FACTOR; PHASE-SEPARATION; TRANSCRIPTION FACTORS; NUCLEAR ARCHITECTURE; COHESIN COMPLEX; DNA-BINDING; T-CELLS; CHROMATIN INTERACTIONS; GENE-EXPRESSION;
D O I
10.1038/s41577-022-00774-5
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy. Three-dimensional (3D) genome organization has emerged as an important regulator of gene expression and genomic interaction. Here, the authors explain how 3D genome organization impacts immune cell development and function, and discuss how aberrant genome folding can contribute to immune-mediated disease and cancer.
引用
收藏
页码:206 / 221
页数:16
相关论文
共 206 条
[1]   Phase separation drives aberrant chromatin looping and cancer development [J].
Ahn, Jeong Hyun ;
Davis, Eric S. ;
Daugird, Timothy A. ;
Zhao, Shuai ;
Quiroga, Ivana Yoseli ;
Uryu, Hidetaka ;
Li, Jie ;
Storey, Aaron J. ;
Tsai, Yi-Hsuan ;
Keeley, Daniel P. ;
Mackintosh, Samuel G. ;
Edmondson, Ricky D. ;
Byrum, Stephanie D. ;
Cai, Ling ;
Tackett, Alan J. ;
Zheng, Deyou ;
Legant, Wesley R. ;
Phanstiel, Douglas H. ;
Wang, Gang Greg .
NATURE, 2021, 595 (7868) :591-+
[2]   Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer [J].
Akdemir, Kadir C. ;
Le, Victoria T. ;
Chandran, Sahaana ;
Li, Yilong ;
Verhaak, Roel G. ;
Beroukhim, Rameen ;
Campbell, Peter J. ;
Chin, Lynda ;
Dixon, Jesse R. ;
Futreal, P. Andrew ;
Alvarez, Eva G. ;
Baez-Ortega, Adrian ;
Beroukhim, Rameen ;
Boutros, Paul C. ;
Bowtell, David D. L. ;
Brors, Benedikt ;
Burns, Kathleen H. ;
Chan, Kin ;
Chen, Ken ;
Cortes-Ciriano, Isidro ;
Dueso-Barroso, Ana ;
Dunford, Andrew J. ;
Edwards, Paul A. ;
Estivill, Xavier ;
Etemadmoghadam, Dariush ;
Feuerbach, Lars ;
Fink, J. Lynn ;
Frenkel-Morgenstern, Milana ;
Garsed, Dale W. ;
Gerstein, Mark ;
Gordenin, Dmitry A. ;
Haan, David ;
Haber, James E. ;
Hess, Julian M. ;
Hutter, Barbara ;
Imielinski, Marcin ;
Jones, David T. W. ;
Ju, Young Seok ;
Kazanov, Marat D. ;
Klimczak, Leszek J. ;
Koh, Youngil ;
Korbel, Jan O. ;
Kumar, Kiran ;
Lee, Eunjung Alice ;
Lee, Jake June-Koo ;
Lynch, Andy G. ;
Macintyre, Geoff ;
Markowetz, Florian ;
Martincorena, Inigo ;
Martinez-Fundichely, Alexander .
NATURE GENETICS, 2020, 52 (03) :294-+
[3]   The three-dimensional genome: regulating gene expression during pluripotency and development [J].
Andrey, Guillaume ;
Mundlos, Stefan .
DEVELOPMENT, 2017, 144 (20) :3646-3658
[4]   Tcf1 is essential for initiation of oncogenic Notch1-driven chromatin topology in T-ALL [J].
Antoszewski, Mateusz ;
Fournier, Nadine ;
Buendia, Gustavo A. Ruiz ;
Lourenco, Joao ;
Liu, Yuanlong ;
Sugrue, Tara ;
Dubey, Christelle ;
Nkosi, Marianne ;
Pritchard, Colin E. J. ;
Huijbers, Ivo J. ;
Segat, Gabriela C. ;
Alonso-Moreno, Sandra ;
Serracanta, Elisabeth ;
Belver, Laura ;
Ferrando, Adolfo A. ;
Ciriello, Giovanni ;
Weng, Andrew P. ;
Koch, Ute ;
Radtke, Freddy .
BLOOD, 2022, 139 (16) :2483-2498
[5]   Plasticity of innate lymphoid cell subsets [J].
Bal, Suzanne M. ;
Golebski, Korneliusz ;
Spits, Hergen .
NATURE REVIEWS IMMUNOLOGY, 2020, 20 (09) :552-565
[6]   Enhancer accessibility and CTCF occupancy underlie asymmetric TAD architecture and cell type specific genome topology [J].
Barrington, Christopher ;
Georgopoulou, Dimitra ;
Pezic, Dubravka ;
Varsally, Wazeer ;
Herrero, Javier ;
Hadjur, Suzana .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]  
Barshad G, 2022, BIORXIV, V2007, DOI [10.1101/2022.07.07.499190, DOI 10.1101/2022.07.07.499190]
[8]   On the existence and functionality of topologically associating domains [J].
Beagan, Jonathan A. ;
Phillips-Cremins, Jennifer E. .
NATURE GENETICS, 2020, 52 (01) :8-16
[9]   Multi-level remodelling of chromatin underlying activation of human T cells [J].
Bediaga, Naiara G. ;
Coughlan, Hannah D. ;
Johanson, Timothy M. ;
Garnham, Alexandra L. ;
Naselli, Gaetano ;
Schroeder, Jan ;
Fearnley, Liam G. ;
Bandala-Sanchez, Esther ;
Allan, Rhys S. ;
Smyth, Gordon K. ;
Harrison, Leonard C. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]   Inducible chromatin priming is associated with the establishment of immunological memory in T cells [J].
Bevington, Sarah L. ;
Cauchy, Pierre ;
Piper, Jason ;
Bertrand, Elisabeth ;
Lalli, Naveen ;
Jarvis, Rebecca C. ;
Gilding, Liam Niall ;
Ott, Sascha ;
Bonifer, Constanze ;
Cockerill, Peter N. .
EMBO JOURNAL, 2016, 35 (05) :515-535