AI Institute in Dynamic Systems: Developing machine learning and AI tools for scientific discovery, engineering design, and data-driven control

被引:1
作者
Kutz, J. Nathan [1 ]
Brunton, Steven L. [1 ]
Manohar, Krithika [1 ]
Lipson, Hod [2 ]
Li, Na [3 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Columbia Univ, New York, NY USA
[3] Harvard Univ, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
Dynamics;
D O I
10.1002/aaai.12159
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The mission of the AI Institute in Dynamic Systems is to develop the next generation of advanced machine learning (ML) and AI tools for controlling complex physical systems by discovering physically interpretable and physics-constrained data-driven models through optimal sensor selection and placement. The research effort is anchored by a common task framework (CTF) that evaluates the performance of ML algorithms, architectures, and optimization schemes for the diverse tasks required in engineering applications. The aim is to push beyond the boundaries of modern techniques by closing the loop between data collection, control, and modeling, creating a unique and cross-disciplinary architecture for learning physically interpretable and physics constrained models of complex dynamic systems from time series data. The CTF further supports sustainable and open-source challenge datasets, which are foundational for developing interpretable, ethical, and inclusive tools to solve problems fundamental to human safety, society, and the environment.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 13 条
[1]   Physics-informed dynamic mode decomposition [J].
Baddoo, Peter J. J. ;
Herrmann, Benjamin ;
McKeon, BeverleyJ. J. ;
Kutz, J. Nathan ;
Brunton, Steven L. L. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2271)
[2]   Discovering governing equations from data by sparse identification of nonlinear dynamical systems [J].
Brunton, Steven L. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) :3932-3937
[3]   Data-driven discovery of coordinates and governing equations [J].
Champion, Kathleen ;
Lusch, Bethany ;
Kutz, J. Nathan ;
Brunton, Steven L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (45) :22445-22451
[4]   Automated discovery of fundamental variables hidden in experimental data [J].
Chen, Boyuan ;
Huang, Kuang ;
Raghupathi, Sunand ;
Chandratreya, Ishaan ;
Du, Qiang ;
Lipson, Hod .
NATURE COMPUTATIONAL SCIENCE, 2022, 2 (07) :433-+
[5]  
de Silva B.M., 2021, J. Open Source Softw, V6, P2828, DOI DOI 10.21105/JOSS.02828
[6]   Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control [J].
Fasel, U. ;
Kutz, J. N. ;
Brunton, B. W. ;
Brunton, S. L. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2260)
[7]  
Gao L., 2022, BAYESIAN AUTOENCODER
[8]   Toward a Theoretical Foundation of Policy Optimization for Learning Control Policies [J].
Hu, Bin ;
Zhang, Kaiqing ;
Li, Na ;
Mesbahi, Mehran ;
Fazel, Maryam ;
Basar, Tamer .
ANNUAL REVIEW OF CONTROL ROBOTICS AND AUTONOMOUS SYSTEMS, 2023, 6 :123-158
[9]  
Kaptanoglu A., 2022, Journal of Open Source Software, V7, P3994, DOI DOI 10.21105/JOSS.03994
[10]   Data-Driven Sparse Sensor Placement for Reconstruction DEMONSTRATING THE BENEFITS OF EXPLOITING KNOWN PATTERNS [J].
Manohar, Krithika ;
Brunton, Bingni W. ;
Kutz, J. Nathan ;
Brunton, Steven L. .
IEEE CONTROL SYSTEMS MAGAZINE, 2018, 38 (03) :63-86