Efficient SrO-based thermochemical energy storage using a closed-loop pressure swing

被引:1
作者
Amghar, Nabil [1 ]
Sanchez-Jimenez, Pedro E. [1 ,2 ]
Ortiz, C. [3 ]
Perez-Maqueda, Luis A. [1 ]
Perejon, Antonio [1 ,2 ]
机构
[1] Univ Seville, Inst Ciencia Mat Sevilla, CSIC, C Amer Vespucio 49, Seville 41092, Spain
[2] Univ Seville, Fac Quim, Dept Quim Inorgan, Seville 41012, Spain
[3] Univ Loyola Andalucia, Dept Engn, Mat & Sustainabil Grp, Avda Univ S-N, Dos Hermanas 41704, Seville, Spain
关键词
Thermochemical energy storage; Low absolute CO 2 pressure; SrCO3; Strontium-looping; Concentrated solar power; Closed loop; CONCENTRATED SOLAR POWER; INTEGRATION; RECEIVERS; CYCLES; SYSTEM;
D O I
10.1016/j.applthermaleng.2023.121411
中图分类号
O414.1 [热力学];
学科分类号
摘要
The SrCO3/SrO system has recently attracted interest for thermochemical energy storage due to the high energy densities potentially attainable. However, the high temperatures needed to promote calcination involve a sintering-induced deactivation of SrO to carbonation. In this work, SrO-based samples have been tested using a closed-loop pressure swing approach involving calcinations and carbonations at absolute pressures of 0.01 bar and 1 bar CO2, respectively. Using low CO2 absolute pressure for calcination decreases the reaction temperature to 900 degrees C, thus reducing the deactivation of SrO. Moreover, the use of additives further improves the reactivity of the samples. The addition of ZrO2 and MgO by mechanical mixing and acetic acid treatment, respectively, results in samples with very high multicycle performance, yielding material energy storage densities after twenty cycles above 5.0 GJ/m3. These results significantly improve those obtained for similar samples in which calcinations and carbonations were carried out at an absolute pressure of 1 bar CO2. Regarding the integration of the thermochemical energy storage into concentrating solar power plants, calcining SrO-based materials at low pressure increases the net thermal-to-electric efficiencies by up to 6 % points compared to CaO-based materials calcined at the same conditions. The importance of experimental conditions and precursors in the multicycle behaviour of SrO-based materials for thermochemical energy storage is emphasized.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Solid-gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review [J].
Alvarez Rivero, M. ;
Rodrigues, D. ;
Pinheiro, C. I. C. ;
Cardoso, J. P. ;
Mendes, L. F. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 158
[2]   The SrCO3/SrO system for thermochemical energy storage at ultra-high temperature [J].
Amghar, Nabil ;
Ortiz, Carlos ;
Perejon, Antonio ;
Manuel Valverde, Jose ;
Perez-Maqueda, Luis ;
Sanchez-Jimenez, Pedro E. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 238
[3]   Kinetics of the carbonation reaction of an SrO-Al2O3 composite for thermochemical energy storage [J].
Ammendola, Paola ;
Raganati, Federica ;
Landi, Elena ;
Murri, Annalisa Natali ;
Miccio, Francesco .
CHEMICAL ENGINEERING JOURNAL, 2021, 420
[4]   Insights into utilization of strontium carbonate for thermochemical energy storage [J].
Ammendola, Paola ;
Raganati, Federica ;
Miccio, Francesco ;
Murri, Annalisa Natali ;
Landi, Elena .
RENEWABLE ENERGY, 2020, 157 :769-781
[5]   Investigation into SrO/SrCO3 for high temperature thermochemical energy storage [J].
Bagherisereshki, Elham ;
Tran, Justin ;
Lei, Fuqiong ;
AuYeung, Nick .
SOLAR ENERGY, 2018, 160 :85-93
[6]   Calcium looping as chemical energy storage in concentrated solar power plants: Carbonator modelling and configuration assessment [J].
Bailera, Manuel ;
Lisbona, Pilar ;
Romeo, Luis M. ;
Diez, Luis I. .
APPLIED THERMAL ENGINEERING, 2020, 172
[7]   Analysis of an energy storage system using reversible calcium hydroxide in fluidised-bed reactors [J].
Bartoli, O. ;
Chacartegui, R. ;
Carro, A. ;
Ortiz, C. ;
Desideri, U. ;
Becerra, J. A. .
APPLIED THERMAL ENGINEERING, 2022, 217
[8]   Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power [J].
Benitez-Guerrero, Monica ;
Manuel Valverde, Jose ;
Perejon, Antonio ;
Sanchez-Jimenez, Pedro E. ;
Perez-Maqueda, Luis A. .
APPLIED ENERGY, 2018, 210 :108-116
[9]   Large-scale high-temperature solar energy storage using natural minerals [J].
Benitez-Guerrero, Monica ;
Sarrion, Beatriz ;
Perejon, Antonio ;
Sanchez-Jimenez, Pedro E. ;
Perez-Maqueda, Luis A. ;
Manuel Valverde, Jose .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 168 :14-21
[10]   Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials [J].
Carrillo, Alfonso J. ;
Gonzalez-Aguilar, Jose ;
Romero, Manuel ;
Coronado, Juan M. .
CHEMICAL REVIEWS, 2019, 119 (07) :4777-4816