Bias-Correction Errors-in-Variables Hammerstein Model Identification

被引:75
作者
Hou, Jie [1 ]
Su, Hao [1 ]
Yu, Chengpu [2 ]
Chen, Fengwei [3 ]
Li, Penghua [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[2] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
[3] Chongqing Univ, Dept Automat, Chongqing 400064, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Noise measurement; Nonlinear systems; Estimation; Data models; White noise; Parametric statistics; Kernel; Bias-correction least squares (BCLS); errors-in-variables (EIV); Hammerstein systems; wireless power transfer (WPT); NONLINEAR-SYSTEM IDENTIFICATION; POWER TRANSFER SYSTEMS; SUBSPACE IDENTIFICATION; RECURSIVE-IDENTIFICATION; PARAMETER-ESTIMATION; CONVERGENCE; ALGORITHMS; INDUCTANCE;
D O I
10.1109/TIE.2022.3199931
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a bias-correction least-squares (LS) algorithm is proposed for identifying block- oriented errors-in-variables nonlinear Hammerstein (EIV- Hammerstein) systems. Because both the input and output of the EIV-Hammerstein system are observed with additive white noises, the estimation bias of traditional LS algorithm is introduced. The estimation bias is derived from a consistency point of view, which is a function about noise variances and monomial of noiseless system input-output measurements. A bias-estimation scheme based only on the available noisy measurements is then proposed for consistent identification of the monomial of noiseless system input-output measurements in a recursive form. In particular, a specific algorithm based on minimizing the output prediction error is given to find out the unknown noise variances for practical applications, such that the noise effect can be eliminated and the consistent estimated parameters are obtained. The effectiveness of the proposed method is demonstrated by a simulation example and an experimental prototype of wireless power transfer system.
引用
收藏
页码:7268 / 7279
页数:12
相关论文
共 49 条
[1]   Analysis of the Mutual Inductance of Planar-Lumped Inductive Power Transfer Systems [J].
Acero, Jesus ;
Carretero, Claudio ;
Lope, Ignacio ;
Alonso, Rafael ;
Lucia, Oscar ;
Burdio, Jose M. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (01) :410-420
[2]   Convergence of the iterative Hammerstein system identification algorithm [J].
Bai, EW ;
Li, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (11) :1929-1940
[3]   Set-membership errors-in-variables identification of MIMO linear systems [J].
Cerone, Vito ;
Razza, Valentino ;
Regruto, Diego .
AUTOMATICA, 2018, 90 :25-37
[4]   Data-Driven Modeling of Wireless Power Transfer Systems With Slowly Time-Varying Parameters [J].
Chen, Fengwei ;
Padilla, Arturo ;
Young, Peter C. ;
Garnier, Hugues .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (11) :12442-12456
[5]   Data-Driven Modeling of Wireless Power Transfer Systems With Multiple Transmitters [J].
Chen, Fengwei ;
Young, Peter C. ;
Garnier, Hugues ;
Deng, Qijun ;
Kazimierczuk, Marian K. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (11) :11363-11379
[6]   Subspace algorithms for the identification of multivariable dynamic errors-in-variables models [J].
Chou, CT ;
Verhaegen, M .
AUTOMATICA, 1997, 33 (10) :1857-1869
[7]   Errors-in-variables identification in dynamic networks - Consistency results for an instrumental variable approach [J].
Dankers, Arne ;
Van den Hof, Paul M. J. ;
Bombois, Xavier ;
Heuberger, Peter S. C. .
AUTOMATICA, 2015, 62 :39-50
[8]   Parameter estimation of dual-rate stochastic systems by using an output error method [J].
Ding, F ;
Chen, TW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (09) :1436-1441
[9]   Identification of Hammerstein nonlinear ARMAX systems [J].
Ding, F ;
Chen, TW .
AUTOMATICA, 2005, 41 (09) :1479-1489
[10]   Combined parameter and output estimation of dual-rate systems using an auxiliary model [J].
Ding, F ;
Chen, TW .
AUTOMATICA, 2004, 40 (10) :1739-1748