Laplacian eigenvalue distribution of a graph with given independence number

被引:1
作者
Choi, Jinwon [1 ,2 ]
Suil, O. [3 ]
Park, Jooyeon [4 ]
Wang, Zhiwen [5 ]
机构
[1] Sookmyung Womens Univ, Dept Math, Seoul 04310, South Korea
[2] Sookmyung Womens Univ, Res Inst Nat Sci, Seoul 04310, South Korea
[3] State Univ New York, Dept Appl Math & Stat, Incheon 21985, South Korea
[4] Sookmyung Womens Univ, Dept Math, Seoul 04310, South Korea
[5] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
关键词
Laplacian eigenvalues; Independence number; BIPARTITE GRAPHS;
D O I
10.1016/j.amc.2023.127943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G , let alpha(G) be the independence number of G , let L(G) be the Laplacian matrix of G , and let mGI be the number of eigenvalues of L(G) in the interval I. Ahanjideh, Akbari, Fakharan and Trevisan proved that alpha(G) <= mG[0, n - alpha(G)] if G is an n-vertex connected graph. Choi, Moon and Park characterized graphs with alpha(G) = mG[0, n - alpha(G)] for alpha(G) = 2 and alpha (G) = n - 2 . In this paper, we give a characterization for alpha (G) = 3 and alpha (G) = n - 3 .(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 14 条
  • [1] Laplacian eigenvalue distribution and graph parameters
    Ahanjideh, M.
    Akbari, S.
    Fakharan, M. H.
    Trevisan, V.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 632 : 1 - 14
  • [2] Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
  • [3] Classification of graphs by Laplacian eigenvalue distribution and independence number
    Choi, Jinwon
    Moon, Sunyo
    Park, Seungkook
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (18) : 2877 - 2893
  • [4] Cvetkovic D., 2010, An Introduction to the Theory of Graph Spectra, DOI DOI 10.1017/CBO9780511801518
  • [5] On the spectral radius of bi-block graphs with given independence number α
    Das, Joyentanuj
    Mohanty, Sumit
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
  • [6] Sharp lower bounds on the Laplacian eigenvalues of trees
    Das, KC
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 384 : 155 - 169
  • [7] Godsil Chris, 2001, Algebraic Graph Theory
  • [8] On the third largest Laplacian eigenvalue of a graph
    Guo, Ji-Ming
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (01) : 93 - 102
  • [9] Hu YR, 2022, Arxiv, DOI arXiv:2206.09152
  • [10] On the second largest Laplacian eigenvalues of graphs
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2438 - 2446