On the Hill relation and the mean reaction time for metastable processes

被引:8
作者
Baudel, Manon [1 ]
Guyader, Arnaud [1 ,2 ]
Lelievre, Tony [1 ,3 ]
机构
[1] Ecole Ponts, CERMICS, Champs Sur Marne, France
[2] Sorbonne Univ, LPSM, Paris, France
[3] INRIA Paris, Paris, France
基金
欧洲研究理事会;
关键词
Source-sink process; Hill relation; Transition path process; Reactive trajectory; Quasi-stationary distribution; QUASI-STATIONARY DISTRIBUTIONS; APPROXIMATION; STABILITY;
D O I
10.1016/j.spa.2022.10.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We illustrate how the Hill relation and the notion of quasi-stationary distribution can be used to analyse the biasing error introduced by many numerical procedures that have been proposed in the literature, in particular in molecular dynamics, to compute mean reaction times between metastable states for Markov processes. The theoretical findings are illustrated on various examples demonstrating the sharpness of the biasing error analysis as well as the applicability of our study to elliptic diffusions.(c) 2022 Published by Elsevier B.V.
引用
收藏
页码:393 / 436
页数:44
相关论文
共 52 条
[1]   Mixing times for uniformly ergodic Markov chains [J].
Aldous, D ;
Lovasz, L ;
Winkler, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 71 (02) :165-185
[2]   Forward flux sampling for rare event simulations [J].
Allen, Rosalind J. ;
Valeriani, Chantal ;
ten Wolde, Pieter Rein .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (46)
[3]  
Aristoff D, 2020, MULTISCALE MODEL SIM, V18, P646, DOI [10.1137/18M1212100, 10.1137/18m1212100]
[4]   ANALYSIS AND OPTIMIZATION OF WEIGHTED ENSEMBLE SAMPLING [J].
Aristoff, David .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (04) :1219-1238
[5]   A MATHEMATICAL FRAMEWORK FOR EXACT MILESTONING [J].
Aristoff, David ;
Bello-Rivas, Juan M. ;
Elber, Ron .
MULTISCALE MODELING & SIMULATION, 2016, 14 (01) :301-322
[6]   Exponential stability for nonlinear filtering [J].
Atar, R ;
Zeitouni, O .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (06) :697-725
[7]   TOTAL VARIATION APPROXIMATION FOR QUASI-STATIONARY DISTRIBUTIONS [J].
Barbour, A. D. ;
Pollett, P. K. .
JOURNAL OF APPLIED PROBABILITY, 2010, 47 (04) :934-946
[8]   MEASLES PERIODICITY AND COMMUNITY SIZE [J].
BARTLETT, MS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-GENERAL, 1957, 120 (01) :48-70
[9]  
Baudel M, 2022, Arxiv, DOI arXiv:2008.09790
[10]   STOCHASTIC APPROXIMATION OF QUASI-STATIONARY DISTRIBUTIONS ON COMPACT SPACES AND APPLICATIONS [J].
Benaim, Michel ;
Cloez, Bertrand ;
Panloup, Fabien .
ANNALS OF APPLIED PROBABILITY, 2018, 28 (04) :2370-2416