Reference-State Error Mitigation: A Strategy for High Accuracy Quantum Computation of Chemistry

被引:18
作者
Lolur, Phalgun [1 ,2 ]
Skogh, Marten [1 ,3 ]
Dobrautz, Werner [1 ]
Warren, Christopher [4 ]
Biznarova, Janka [4 ]
Osman, Amr [4 ]
Tancredi, Giovanna [4 ]
Wendin, Goran [4 ]
Bylander, Jonas [4 ]
Rahm, Martin [1 ]
机构
[1] Chalmers Univ Technol, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden
[2] UK Res & Innovat UKRI, Natl Quantum Comp Ctr NQCC, Sci & Technol Facil Council STFC, Rutherford Appleton Lab, Harwell Campus, Didcot OX11 0QX, Oxon, England
[3] AstraZeneca, Data Sci & Modelling, Pharmaceut Sci, R&D, SE-43183 Gothenburg, Sweden
[4] Chalmers Univ Technol, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
MOLECULES;
D O I
10.1021/acs.jctc.2c00807
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Decoherence and gate errors severely limit the capabilities of state-of-the-art quantum computers. This work introduces a strategy for reference-state error mitigation (REM) of quantum chemistry that can be straightforwardly implemented on current and near-term devices. REM can be applied alongside existing mitigation procedures, while requiring minimal post-processing and only one or no additional measurements. The approach is agnostic to the underlying quantum mechanical ansatz and is designed for the variational quantum eigensolver. Up to two orders-of-magnitude improvement in the computational accuracy of ground state energies of small molecules (H2, HeH+, and LiH) is demonstrated on superconducting quantum hardware. Simulations of noisy circuits with a depth exceeding 1000 two-qubit gates are used to demonstrate the scalability of the method.
引用
收藏
页码:783 / 789
页数:7
相关论文
共 36 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]  
Aliferis P, 2007, Arxiv, DOI arXiv:quant-ph/0703264
[3]  
Arute F, 2020, Arxiv, DOI arXiv:2010.07965
[4]   Low-cost error mitigation by symmetry verification [J].
Bonet-Monroig, X. ;
Sagastizabal, R. ;
Singh, M. ;
O'Brien, T. E. .
PHYSICAL REVIEW A, 2018, 98 (06)
[5]   Mitigating measurement errors in multiqubit experiments [J].
Bravyi, Sergey ;
Sheldon, Sarah ;
Kandala, Abhinav ;
Mckay, David C. ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2021, 103 (04)
[6]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915
[7]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[8]   Error mitigation with Clifford quantum-circuit data [J].
Czarnik, Piotr ;
Arrasmith, Andrew ;
Coles, Patrick J. ;
Cincio, Lukasz .
QUANTUM, 2021, 5
[9]  
Elfving V.E., 2020, How will quantum computers provide an industrially relevant computational advantage in quantum chemistry?, DOI DOI 10.48550/ARXIV.2009.12472
[10]  
Farhi E, 2014, Arxiv, DOI [arXiv:1411.4028, 10.48550/arXiv.1411.4028]