Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severity

被引:12
作者
Park, Jonathan J. J. [1 ,2 ,3 ,4 ,5 ]
Lee, Kyoung A. V. [1 ,2 ,3 ,6 ]
Lam, Stanley Z. Z. [1 ,2 ,3 ]
Moon, Katherine S. S. [1 ,2 ,3 ]
Fang, Zhenhao [1 ,2 ,3 ]
Chen, Sidi [1 ,2 ,3 ,4 ,5 ,7 ,8 ,9 ,10 ]
机构
[1] Yale Sch Med, Dept Genet, New Haven, CT 06510 USA
[2] Yale Univ, Syst Biol Inst, West Haven, CT 06520 USA
[3] Yale Univ, Ctr Canc Syst Biol, West Haven, CT 06520 USA
[4] Yale Univ, MD PhD Program, New Haven, CT 06520 USA
[5] Yale Univ, Mol Cell Biol Genet & Dev Program, New Haven, CT 06520 USA
[6] Yale Sch Publ Hlth, Dept Biostat, New Haven, CT USA
[7] Yale Univ, Immunobiol Program, New Haven, CT 06520 USA
[8] Yale Comprehens Canc Ctr, Yale Sch Med, New Haven, CT 06510 USA
[9] Yale Stem Cell Ctr, Yale Sch Med, New Haven, CT 06510 USA
[10] Yale Ctr Biomed Data Sci, Yale Sch Med, New Haven, CT 06510 USA
关键词
IMMUNITY; MILD; RESPONSES; DISEASE;
D O I
10.1038/s42003-023-04447-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
T cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR repertoire composition, diversity, and dynamics and how they change during viral infection can inform the molecular specificity of host responses to viruses such as SARS-CoV-2. To determine signatures associated with COVID-19 disease severity, here we perform a large-scale analysis of over 4.7 billion sequences across 2130 TCR repertoires from COVID-19 patients and healthy donors. TCR repertoire analyses from these data identify and characterize convergent COVID-19-associated CDR3 gene usages, specificity groups, and sequence patterns. Here we show that T cell clonal expansion is associated with the upregulation of T cell effector function, TCR signaling, NF-kB signaling, and interferon-gamma signaling pathways. We also demonstrate that machine learning approaches accurately predict COVID-19 infection based on TCR sequence features, with certain high-power models reaching near-perfect AUROC scores. These analyses provide a systems immunology view of T cell adaptive immune responses to COVID-19. Signatures associated with COVID-19 disease severity are studied, primarily using machine learning models for classification on the basis of TCR repertoire analysis and combining such data/analysis with single cell transcriptomic data.
引用
收藏
页数:13
相关论文
共 52 条
[21]   Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening [J].
Huang, Huang ;
Wang, Chunlin ;
Rubelt, Florian ;
Scriba, Thomas J. ;
Davis, Mark M. .
NATURE BIOTECHNOLOGY, 2020, 38 (10) :1194-+
[22]   Immunological considerations for COVID-19 vaccine strategies [J].
Jeyanathan, Mangalakumari ;
Afkhami, Sam ;
Smaill, Fiona ;
Miller, Matthew S. ;
Lichty, Brian D. ;
Xing, Zhou .
NATURE REVIEWS IMMUNOLOGY, 2020, 20 (10) :615-632
[23]   SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells [J].
Jung, Jae Hyung ;
Rha, Min-Seok ;
Sa, Moa ;
Choi, Hee Kyoung ;
Jeon, Ji Hoon ;
Seok, Hyeri ;
Park, Dae Won ;
Park, Su-Hyung ;
Jeong, Hye Won ;
Choi, Won Suk ;
Shin, Eui-Cheol .
NATURE COMMUNICATIONS, 2021, 12 (01)
[24]   The known unknowns of T cell immunity to COVID-19 [J].
Karlsson, Annika C. ;
Humbert, Marion ;
Buggert, Marcus .
SCIENCE IMMUNOLOGY, 2020, 5 (53)
[25]   SARS-CoV-2 vaccines in development [J].
Krammer, Florian .
NATURE, 2020, 586 (7830) :516-527
[26]   A dynamic COVID-19 immune signature includes associations with poor prognosis [J].
Laing, Adam G. ;
Lorenc, Anna ;
del Barrio, Irene del Molino ;
Das, Abhishek ;
Fish, Matthew ;
Monin, Leticia ;
Munoz-Ruiz, Miguel ;
McKenzie, Duncan R. ;
Hayday, Thomas S. ;
Francos-Quijorna, Isaac ;
Kamdar, Shraddha ;
Joseph, Magdalene ;
Davies, Daniel ;
Davis, Richard ;
Jennings, Aislinn ;
Zlatareva, Iva ;
Vantourout, Pierre ;
Wu, Yin ;
Sofra, Vasiliki ;
Cano, Florencia ;
Greco, Maria ;
Theodoridis, Efstathios ;
Freedman, Joshua ;
Gee, Sarah ;
Chan, Julie Nuo En ;
Ryan, Sarah ;
Bugallo-Blanco, Eva ;
Peterson, Part ;
Kisand, Kai ;
Haljasmagi, Liis ;
Chadli, Loubna ;
Moingeon, Philippe ;
Martinez, Lauren ;
Merrick, Blair ;
Bisnauthsing, Karen ;
Brooks, Kate ;
Ibrahim, Mohammad A. A. ;
Mason, Jeremy ;
Gomez, Federico Lopez ;
Babalola, Kola ;
Abdul-Jawad, Sultan ;
Cason, John ;
Mant, Christine ;
Seow, Jeffrey ;
Graham, Carl ;
Doores, Katie J. ;
Di Rosa, Francesca ;
Edgeworth, Jonathan ;
Shankar-Hari, Manu ;
Hayday, Adrian C. .
NATURE MEDICINE, 2020, 26 (10) :1623-+
[27]   SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls [J].
Le Bert, Nina ;
Tan, Anthony T. ;
Kunasegaran, Kamini ;
Tham, Christine Y. L. ;
Hafezi, Morteza ;
Chia, Adeline ;
Chng, Melissa Hui Yen ;
Lin, Meiyin ;
Tan, Nicole ;
Linster, Martin ;
Chia, Wan Ni ;
Chen, Mark I-Cheng ;
Wang, Lin-Fa ;
Ooi, Eng Eong ;
Kalimuddin, Shirin ;
Tambyah, Paul Anantharajah ;
Low, Jenny Guek-Hong ;
Tan, Yee-Joo ;
Bertoletti, Antonio .
NATURE, 2020, 584 (7821) :457-+
[28]   Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 [J].
Liao, Mingfeng ;
Liu, Yang ;
Yuan, Jing ;
Wen, Yanling ;
Xu, Gang ;
Zhao, Juanjuan ;
Cheng, Lin ;
Li, Jinxiu ;
Wang, Xin ;
Wang, Fuxiang ;
Liu, Lei ;
Amit, Ido ;
Zhang, Shuye ;
Zhang, Zheng .
NATURE MEDICINE, 2020, 26 (06) :842-+
[29]   Predictors ofCOVID-19 severity: A literature review [J].
Marin, Benjamin Gallo ;
Aghagoli, Ghazal ;
Lavine, Katya ;
Yang, Lanbo ;
Siff, Emily J. ;
Chiang, Silvia S. ;
Salazar-Mather, Thais P. ;
Dumenco, Luba ;
Savaria, Michael C. ;
Aung, Su N. ;
Flanigan, Timothy ;
Michelow, Ian C. .
REVIEWS IN MEDICAL VIROLOGY, 2021, 31 (01) :1-10
[30]   Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive immune Repertoires [J].
Miho, Enkelejda ;
Yermanos, Alexander ;
Weber, Cedric R. ;
Berger, Christoph T. ;
Reddy, Sai T. ;
Greiff, Victor .
FRONTIERS IN IMMUNOLOGY, 2018, 9