Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severity

被引:12
作者
Park, Jonathan J. J. [1 ,2 ,3 ,4 ,5 ]
Lee, Kyoung A. V. [1 ,2 ,3 ,6 ]
Lam, Stanley Z. Z. [1 ,2 ,3 ]
Moon, Katherine S. S. [1 ,2 ,3 ]
Fang, Zhenhao [1 ,2 ,3 ]
Chen, Sidi [1 ,2 ,3 ,4 ,5 ,7 ,8 ,9 ,10 ]
机构
[1] Yale Sch Med, Dept Genet, New Haven, CT 06510 USA
[2] Yale Univ, Syst Biol Inst, West Haven, CT 06520 USA
[3] Yale Univ, Ctr Canc Syst Biol, West Haven, CT 06520 USA
[4] Yale Univ, MD PhD Program, New Haven, CT 06520 USA
[5] Yale Univ, Mol Cell Biol Genet & Dev Program, New Haven, CT 06520 USA
[6] Yale Sch Publ Hlth, Dept Biostat, New Haven, CT USA
[7] Yale Univ, Immunobiol Program, New Haven, CT 06520 USA
[8] Yale Comprehens Canc Ctr, Yale Sch Med, New Haven, CT 06510 USA
[9] Yale Stem Cell Ctr, Yale Sch Med, New Haven, CT 06510 USA
[10] Yale Ctr Biomed Data Sci, Yale Sch Med, New Haven, CT 06510 USA
关键词
IMMUNITY; MILD; RESPONSES; DISEASE;
D O I
10.1038/s42003-023-04447-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
T cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR repertoire composition, diversity, and dynamics and how they change during viral infection can inform the molecular specificity of host responses to viruses such as SARS-CoV-2. To determine signatures associated with COVID-19 disease severity, here we perform a large-scale analysis of over 4.7 billion sequences across 2130 TCR repertoires from COVID-19 patients and healthy donors. TCR repertoire analyses from these data identify and characterize convergent COVID-19-associated CDR3 gene usages, specificity groups, and sequence patterns. Here we show that T cell clonal expansion is associated with the upregulation of T cell effector function, TCR signaling, NF-kB signaling, and interferon-gamma signaling pathways. We also demonstrate that machine learning approaches accurately predict COVID-19 infection based on TCR sequence features, with certain high-power models reaching near-perfect AUROC scores. These analyses provide a systems immunology view of T cell adaptive immune responses to COVID-19. Signatures associated with COVID-19 disease severity are studied, primarily using machine learning models for classification on the basis of TCR repertoire analysis and combining such data/analysis with single cell transcriptomic data.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Profound dysregulation of T cell homeostasis and function in patients with severe COVID-19 [J].
Adamo, Sarah ;
Chevrier, Stephane ;
Cervia, Carlo ;
Zurbuchen, Yves ;
Raeber, Miro E. ;
Yang, Liliane ;
Sivapatham, Sujana ;
Jacobs, Andrea ;
Baechli, Esther ;
Rudiger, Alain ;
Stussi-Helbling, Melina ;
Huber, Lars C. ;
Schaer, Dominik J. ;
Bodenmiller, Bernd ;
Boyman, Onur ;
Nilsson, Jakob .
ALLERGY, 2021, 76 (09) :2866-2881
[2]  
[Anonymous], 2020, IMMUNE CELL PROFILIN, DOI [10.1038/s41421-020-0168-9, DOI 10.1038/S41421-020-0168-9]
[3]   Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans [J].
Arunachalam, Prabhu S. ;
Wimmers, Florian ;
Mok, Chris Ka Pun ;
Perera, Ranawaka A. P. M. ;
Scott, Madeleine ;
Hagan, Thomas ;
Sigal, Natalia ;
Feng, Yupeng ;
Bristow, Laurel ;
Tsang, Owen Tak-Yin ;
Wagh, Dhananjay ;
Coller, John ;
Pellegrini, Kathryn L. ;
Kazmin, Dmitri ;
Alaaeddine, Ghina ;
Leung, Wai Shing ;
Chan, Jacky Man Chun ;
Chik, Thomas Shiu Hong ;
Choi, Chris Yau Chung ;
Huerta, Christopher ;
McCullough, Michele Paine ;
Lv, Huibin ;
Anderson, Evan ;
Edupuganti, Srilatha ;
Upadhyay, Amit A. ;
Bosinger, Steve E. ;
Maecker, Holden Terry ;
Khatri, Purvesh ;
Rouphael, Nadine ;
Peiris, Malik ;
Pulendran, Bali .
SCIENCE, 2020, 369 (6508) :1210-+
[4]   ArrayExpress update - from bulk to single-cell expression data [J].
Athar, Awais ;
Fullgrabe, Anja ;
George, Nancy ;
Iqbal, Haider ;
Huerta, Laura ;
Ali, Ahmed ;
Snow, Catherine ;
Fonseca, Nuno A. ;
Petryszak, Robert ;
Papatheodorou, Irene ;
Sarkans, Ugis ;
Brazma, Alvis .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D711-D715
[5]   Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease [J].
Bergamaschi, Laura ;
Mescia, Federica ;
Turner, Lorinda ;
Hanson, Aimee L. ;
Kotagiri, Prasanti ;
Dunmore, Benjamin J. ;
Ruffieux, Helene ;
De Sa, Aloka ;
Huhn, Oisin ;
Morgan, Michael D. ;
Gerber, Pehuen Pereyra ;
Wills, Mark R. ;
Baker, Stephen ;
Calero-Nieto, Fernando J. ;
Doffinger, Rainer ;
Dougan, Gordon ;
Elmer, Anne ;
Goodfellow, Ian G. ;
Gupta, Ravindra K. ;
Hosmillo, Myra ;
Hunter, Kelvin ;
Kingston, Nathalie ;
Lehner, Paul J. ;
Matheson, Nicholas J. ;
Nicholson, Jeremy K. ;
Petrunkina, Anna M. ;
Richardson, Sylvia ;
Saunders, Caroline ;
Thaventhiran, James E. D. ;
Toonen, Erik J. M. ;
Weekes, Michael P. ;
Gottgens, Berthold ;
Toshner, Mark ;
Hess, Christoph ;
Bradley, John R. ;
Lyons, Paul A. ;
Smith, Kenneth G. C. .
IMMUNITY, 2021, 54 (06) :1257-+
[6]   Probing T-cell response by sequence-based probabilistic modeling [J].
Bravi, Barbara ;
Balachandran, Vinod P. ;
Greenbaum, Benjamin D. ;
Walczak, Aleksandra M. ;
Mora, Thierry ;
Monasson, Remi ;
Cocco, Simona .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (09)
[7]   T cell responses in patients with COVID-19 [J].
Chen, Zeyu ;
John Wherry, E. .
NATURE REVIEWS IMMUNOLOGY, 2020, 20 (09) :529-536
[8]   Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study [J].
Chia, Wan Ni ;
Zhu, Feng ;
Ong, Sean Wei Xiang ;
Young, Barnaby Edward ;
Fong, Siew-Wai ;
Le Bert, Nina ;
Tan, Chee Wah ;
Tiu, Charles ;
Zhang, Jinyan ;
Tan, Seow Yen ;
Pada, Surinder ;
Chan, Yi-Hao ;
Tham, Christine Y. L. ;
Kunasegaran, Kamini ;
Chen, Mark I-C ;
Low, Jenny G. H. ;
Leo, Yee-Sin ;
Renia, Laurent ;
Bertoletti, Antonio ;
Ng, Lisa F. P. ;
Lye, David Chien ;
Wang, Lin-Fa .
LANCET MICROBE, 2021, 2 (06) :E240-E249
[9]   iReceptor: A platform for querying and analyzing antibody/B-cell and T-cell receptor repertoire data across federated repositories [J].
Corrie, Brian D. ;
Marthandan, Nishanth ;
Zimonja, Bojan ;
Jaglale, Jerome ;
Zhou, Yang ;
Barr, Emily ;
Knoetze, Nicole ;
Breden, Frances M. W. ;
Christley, Scott ;
Scott, Jamie K. ;
Cowell, Lindsay G. ;
Breden, Felix .
IMMUNOLOGICAL REVIEWS, 2018, 284 (01) :24-41
[10]   Comprehensive Analysis of CDR3 Sequences in Gluten-Specific T-Cell Receptors Reveals a Dominant R-Motif and Several New Minor Motifs [J].
Dahal-Koirala, Shiva ;
Risnes, Louise Fremgaard ;
Neumann, Ralf Stefan ;
Christophersen, Asbjorn ;
Lundin, Knut E. A. ;
Sandve, Geir Kjetil ;
Qiao, Shuo-Wang ;
Sollid, Ludvig M. .
FRONTIERS IN IMMUNOLOGY, 2021, 12