Kupershmidt operators on Hom-Malcev algebras and their deformation

被引:3
作者
Harrathi, Fattoum [1 ]
Mabrouk, Sami [2 ]
Ncib, Othmen [2 ]
Silvestrov, Sergei [3 ]
机构
[1] Univ Sfax, Fac Sci Sfax, BP 1171, Sfax 3038, Tunisia
[2] Univ Gafsa, Fac Sci Gafsa, Gafsa 2112, Tunisia
[3] Malardalen Univ, Sch Educ Culture & Commun, Div Math & Phys, Box 883, S-72123 Vasteras, Sweden
关键词
Hom-Malcev algebra; Hom-pre-Malcev algebra; Kupershmidt operator; LIE-ALGEBRAS; ALTERNATIVE ALGEBRAS; RINGS;
D O I
10.1142/S0219887823500469
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The main feature of Hom-algebras is that the identities defining the structures are twisted by linear maps. The purpose of this paper is to introduce and study a Hom-type generalization of pre-Malcev algebras, called Hom-pre-Malcev algebras. We also introduce the notion of Kupershmidt operators of Hom-Malcev and Hom-pre-Malcev algebras and show the connections between Hom-Malcev and Hom-pre-Malcev algebras using Kupershmidt operators. Hom-pre-Malcev algebras generalize Hom-pre-Lie algebras to the Hom-alternative setting and fit into a bigger framework with a close relationship with Hom-pre-alternative algebras. Finally, we establish a deformation theory of Kupershmidt operators on a Hom-Malcev algebra in consistence with the general principles of deformation theories and introduce the notion of Nijenhuis elements.
引用
收藏
页数:34
相关论文
共 66 条