Quantum Parameter Estimation With Graph States In SU(N) Dynamics

被引:0
|
作者
Tao, Hong [1 ,2 ]
Huang, Rui [3 ]
Tan, Xiaoqing [4 ]
机构
[1] Natl Univ Def Technol, Inst Quantum Informat, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
[3] Shenzhen Polytech Univ, Sch Artificial Intelligence, Shenzhen 518055, Guangdong, Peoples R China
[4] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
graph states; optimal measurement; quantum Cramer-Rao bound; quantum parameter estimation; SU(N) dynamics; FISHER INFORMATION; ENTANGLEMENT; METROLOGY;
D O I
10.1002/qute.202300254
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum metrology, achieving optimal simultaneous multiparameter estimation is of great significance but remains highly challenging. The research approach involving evolution on SU(N) dynamics provides a framework to investigate simultaneous multiparameter estimation within graph states. For single-parameter estimation, it is observed that the precision limit exceeds the Heisenberg limit in higher-dimensional SU(2) spin systems. For multiparameter estimation, two scenarios are considered: one with commutative Hamiltonian operators and another with non-commutative Hamiltonian operators. The results demonstrate that the global estimation precision exceeds the local estimation precision. Under the conditions of parameter limit, the precision of parameter estimation for simultaneously estimating each parameter is equal to that of single-parameter estimation. Furthermore, a precision-enhancement scheme has been identified that depends on the dynamics of SU(N). The smaller the value of N in the dynamic evolution, the higher the precision of the parameter estimation. Finally, it is demonstrated that graph states serve as optimal states in quantum metrology. A set of optimal measurement bases is also identified, and it is illustrated that the precision limit of multiparameter estimation can attain the quantum Cramer-Rao bound.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Quantum enhanced multiple-phase estimation with multi-mode N00N states
    Hong, Seongjin
    Rehman, Junaid Ur
    Kim, Yong-Su
    Cho, Young-Wook
    Lee, Seung-Woo
    Jung, Hojoong
    Moon, Sung
    Han, Sang-Wook
    Lim, Hyang-Tag
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [42] Quantum Dynamics of Bound Entangled States
    ZHU Guo-Qiang~1 WANG Xiao-Guang~(1
    Communications in Theoretical Physics, 2008, 49 (02) : 343 - 346
  • [43] Quantum dynamics of bound entangled states
    Zhu Guo-Qiang
    Wang Xiao-Guang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (02) : 343 - 346
  • [44] Quantum properties and dynamics of X states
    Quesada, Nicolas
    Al-Qasimi, Asma
    James, Daniel F. V.
    JOURNAL OF MODERN OPTICS, 2012, 59 (15) : 1322 - 1329
  • [45] Quantum parameter estimation with the Landau-Zener transition
    Yang, Jing
    Pang, Shengshi
    Jordan, Andrew N.
    PHYSICAL REVIEW A, 2017, 96 (02)
  • [46] Tensorial dynamics on the space of quantum states
    Carinena, J. F.
    Clemente-Gallardo, J.
    Jover-Galtier, J. A.
    Marmo, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (36)
  • [47] Preferred measurements: optimality and stability in quantum parameter estimation
    Durkin, Gabriel A.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [48] Q-Deformed SU(1,1) and SU(2) Squeezed and Intelligent States and Quantum Entanglement
    Rouabah, M. T.
    Mebarki, N.
    Ghiti, M. F.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 241 - 245
  • [49] Geometry of perturbed Gaussian states and quantum estimation
    Genoni, Marco G.
    Giorda, Paolo
    Paris, Matteo G. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
  • [50] Compilation of algorithm-specific graph states for quantum circuits
    Krishnan Vijayan, Madhav
    Paler, Alexandru
    Gavriel, Jason
    Myers, Casey R.
    Rohde, Peter P.
    Devitt, Simon J.
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (02)