Quantum Parameter Estimation With Graph States In SU(N) Dynamics

被引:0
|
作者
Tao, Hong [1 ,2 ]
Huang, Rui [3 ]
Tan, Xiaoqing [4 ]
机构
[1] Natl Univ Def Technol, Inst Quantum Informat, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
[3] Shenzhen Polytech Univ, Sch Artificial Intelligence, Shenzhen 518055, Guangdong, Peoples R China
[4] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
graph states; optimal measurement; quantum Cramer-Rao bound; quantum parameter estimation; SU(N) dynamics; FISHER INFORMATION; ENTANGLEMENT; METROLOGY;
D O I
10.1002/qute.202300254
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum metrology, achieving optimal simultaneous multiparameter estimation is of great significance but remains highly challenging. The research approach involving evolution on SU(N) dynamics provides a framework to investigate simultaneous multiparameter estimation within graph states. For single-parameter estimation, it is observed that the precision limit exceeds the Heisenberg limit in higher-dimensional SU(2) spin systems. For multiparameter estimation, two scenarios are considered: one with commutative Hamiltonian operators and another with non-commutative Hamiltonian operators. The results demonstrate that the global estimation precision exceeds the local estimation precision. Under the conditions of parameter limit, the precision of parameter estimation for simultaneously estimating each parameter is equal to that of single-parameter estimation. Furthermore, a precision-enhancement scheme has been identified that depends on the dynamics of SU(N). The smaller the value of N in the dynamic evolution, the higher the precision of the parameter estimation. Finally, it is demonstrated that graph states serve as optimal states in quantum metrology. A set of optimal measurement bases is also identified, and it is illustrated that the precision limit of multiparameter estimation can attain the quantum Cramer-Rao bound.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Entanglement, Quantum Correlators, and Connectivity in Graph States
    Vesperini, Arthur
    Franzosi, Roberto
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (02)
  • [32] Quantum secret sharing with qudit graph states
    Keet, Adrian
    Fortescue, Ben
    Markham, Damian
    Sanders, Barry C.
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [33] Lorentz invariant quantum concurrence for SU(2) ⊗ SU(2) spin-parity states
    Bernardini, Alex E.
    Bittencourt, Victor A. S. V.
    Blasone, Massimo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (03):
  • [34] Determing the entanglement of quantum nonbinary graph states
    Xu Jian
    Chen Xiao-Yu
    Li Hai-Tao
    ACTA PHYSICA SINICA, 2012, 61 (22)
  • [35] Robustness of Imperfect Initialization in Quantum Parameter Estimation
    Bao, Liying
    Qi, Bo
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 5818 - 5821
  • [36] Optimal quantum parameter estimation in a pulsed quantum optomechanical system
    Zheng, Qiang
    Yao, Yao
    Li, Yong
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [37] Multi-channel quantum parameter estimation
    Liying Bao
    Bo Qi
    Yabo Wang
    Daoyi Dong
    Rebing Wu
    Science China Information Sciences, 2022, 65
  • [38] Asymptotic estimation of a shift parameter of a quantum state
    Holevo, AS
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2004, 49 (02) : 207 - 220
  • [39] Quantum phase estimation and realistic detection schemes in Mach-Zehnder interferometer using SU(2) coherent states
    Abdellaoui, M.
    Abouelkhir, N. -E.
    Slaoui, A.
    Laamara, R. Ahl
    PHYSICS LETTERS A, 2024, 522
  • [40] Enhancing parameter precision of optimal quantum estimation by direct quantum feedback
    Zheng, Qiang
    Ge, Li
    Yao, Yao
    Zhi, Qi-jun
    PHYSICAL REVIEW A, 2015, 91 (03)