Quantum Parameter Estimation With Graph States In SU(N) Dynamics

被引:0
|
作者
Tao, Hong [1 ,2 ]
Huang, Rui [3 ]
Tan, Xiaoqing [4 ]
机构
[1] Natl Univ Def Technol, Inst Quantum Informat, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
[3] Shenzhen Polytech Univ, Sch Artificial Intelligence, Shenzhen 518055, Guangdong, Peoples R China
[4] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
graph states; optimal measurement; quantum Cramer-Rao bound; quantum parameter estimation; SU(N) dynamics; FISHER INFORMATION; ENTANGLEMENT; METROLOGY;
D O I
10.1002/qute.202300254
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum metrology, achieving optimal simultaneous multiparameter estimation is of great significance but remains highly challenging. The research approach involving evolution on SU(N) dynamics provides a framework to investigate simultaneous multiparameter estimation within graph states. For single-parameter estimation, it is observed that the precision limit exceeds the Heisenberg limit in higher-dimensional SU(2) spin systems. For multiparameter estimation, two scenarios are considered: one with commutative Hamiltonian operators and another with non-commutative Hamiltonian operators. The results demonstrate that the global estimation precision exceeds the local estimation precision. Under the conditions of parameter limit, the precision of parameter estimation for simultaneously estimating each parameter is equal to that of single-parameter estimation. Furthermore, a precision-enhancement scheme has been identified that depends on the dynamics of SU(N). The smaller the value of N in the dynamic evolution, the higher the precision of the parameter estimation. Finally, it is demonstrated that graph states serve as optimal states in quantum metrology. A set of optimal measurement bases is also identified, and it is illustrated that the precision limit of multiparameter estimation can attain the quantum Cramer-Rao bound.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Optimal control for Hamiltonian parameter estimation in non-commuting and bipartite quantum dynamics
    Qin, Shushen
    Cramer, Marcus
    Koch, Christiane P.
    Serafini, Alessio
    SCIPOST PHYSICS, 2022, 13 (06):
  • [22] Quantum parameter estimation with feedback control
    Liu, Liqiang
    Yuan, Haidong
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 5249 - 5252
  • [23] Lower Bounds for Quantum Parameter Estimation
    Walter, Michael
    Renes, Joseph M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (12) : 8007 - 8023
  • [24] Optimized Quantum Parameter Estimation in Open Quantum Systems
    Yang, Shuai
    Cui, Wei
    2020 INTERNATIONAL SYMPOSIUM ON AUTONOMOUS SYSTEMS (ISAS), 2020, : 121 - 123
  • [25] SU(2)-invariant depolarization of quantum states of light
    Rivas, Angel
    Luis, Alfredo
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [26] Influence of entanglement on precision of parameter estimation in quantum weak measurement
    Zhang Xiao-Dong
    Yu Ya-Fei
    Zhang Zhi-Ming
    ACTA PHYSICA SINICA, 2021, 70 (24)
  • [27] Local quantum uncertainty of SU(2) invariant states
    Faizi, Esfandyar
    Ahansaz, Bahram
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 67 (12) : 2033 - 2038
  • [28] Quantum Correlations in One Parameter Mixed Quantum States
    Sharma, Kapil K.
    Rajdeepak, Rishikant
    Ozaydin, Fatih
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2025, 64 (04)
  • [29] Enhancement of the Quantum Parameter Estimation in Yang-Baxter Systems
    Duran, Durgun
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (07) : 2091 - 2100
  • [30] Improving quantum parameter estimation by monitoring quantum trajectories
    Ma, Yao
    Pang, Mi
    Chen, Libo
    Yang, Wen
    PHYSICAL REVIEW A, 2019, 99 (03)