Quantum Parameter Estimation With Graph States In SU(N) Dynamics

被引:0
|
作者
Tao, Hong [1 ,2 ]
Huang, Rui [3 ]
Tan, Xiaoqing [4 ]
机构
[1] Natl Univ Def Technol, Inst Quantum Informat, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Coll Comp Sci & Technol, Changsha 410073, Peoples R China
[3] Shenzhen Polytech Univ, Sch Artificial Intelligence, Shenzhen 518055, Guangdong, Peoples R China
[4] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
graph states; optimal measurement; quantum Cramer-Rao bound; quantum parameter estimation; SU(N) dynamics; FISHER INFORMATION; ENTANGLEMENT; METROLOGY;
D O I
10.1002/qute.202300254
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum metrology, achieving optimal simultaneous multiparameter estimation is of great significance but remains highly challenging. The research approach involving evolution on SU(N) dynamics provides a framework to investigate simultaneous multiparameter estimation within graph states. For single-parameter estimation, it is observed that the precision limit exceeds the Heisenberg limit in higher-dimensional SU(2) spin systems. For multiparameter estimation, two scenarios are considered: one with commutative Hamiltonian operators and another with non-commutative Hamiltonian operators. The results demonstrate that the global estimation precision exceeds the local estimation precision. Under the conditions of parameter limit, the precision of parameter estimation for simultaneously estimating each parameter is equal to that of single-parameter estimation. Furthermore, a precision-enhancement scheme has been identified that depends on the dynamics of SU(N). The smaller the value of N in the dynamic evolution, the higher the precision of the parameter estimation. Finally, it is demonstrated that graph states serve as optimal states in quantum metrology. A set of optimal measurement bases is also identified, and it is illustrated that the precision limit of multiparameter estimation can attain the quantum Cramer-Rao bound.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum secret sharing with quantum graph states
    Liang Jian-Wu
    Cheng Zi
    Shi Jin-Jing
    Guo Ying
    ACTA PHYSICA SINICA, 2016, 65 (16)
  • [2] Quantum coherence and parameter estimation for mixed entangled coherent states
    Algarni, Mariam
    Berrada, K.
    Abdel-Khalek, S.
    MODERN PHYSICS LETTERS A, 2022, 37 (24)
  • [3] Estimation of Gaussian quantum states
    Safranek, Dominik
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (03)
  • [4] Optimal initial states for quantum parameter estimation based on Jaynes-Cummings model [Invited]
    Qiao, Liwen
    Peng, Jia-Xin
    Zhu, Baiqiang
    Zhang, Weiping
    Zhang, Keye
    CHINESE OPTICS LETTERS, 2023, 21 (10)
  • [5] Machine-Learning-Based Parameter Estimation of Gaussian Quantum States
    Kundu N.K.
    McKay M.R.
    Mallik R.K.
    IEEE Transactions on Quantum Engineering, 2022, 3
  • [6] Parameter estimation using NOON states over a relativistic quantum channel
    Hosler, Dominic
    Kok, Pieter
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [7] Multi-channel quantum parameter estimation
    Bao, Liying
    Qi, Bo
    Wang, Yabo
    Dong, Daoyi
    Wu, Rebing
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (10)
  • [8] Entanglement detection and parameter estimation of quantum channels
    Suzuki, Jun
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [9] Multiparameter quantum estimation theory in quantum Gaussian states
    Bakmou, Lahcen
    Daoud, Mohammed
    Laamara, Rachid ahl
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (38)
  • [10] TESTING EQUIVALENCE OF PURE QUANTUM STATES AND GRAPH STATES UNDER SLOCC
    D'Souza, Adam G.
    Briet, Jop
    Feder, David L.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (1-2) : 395 - 410