UWB and MB-OFDM for Lunar Rover Navigation and Communication

被引:4
作者
de Curto, J. [1 ,2 ,3 ]
de Zarza, I. [1 ,2 ,3 ]
Calafate, Carlos T. [1 ]
机构
[1] Univ Politecn Valencia, Dept Informat Sistemas & Comp, Valencia 46022, Spain
[2] GOETHE Univ Frankfurt Main, Informat & Math, D-60323 Frankfurt, Germany
[3] Univ Oberta Catalunya, Estudis Informat Multimedia & Telecomunicac, Barcelona 08018, Spain
关键词
UWB; MB-OFDM; lunar missions; interplanetary communications; game theory; rover; 85-10; MULTIPLE-ACCESS; BAND;
D O I
10.3390/math11183835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a comprehensive study of ultra-wideband (UWB) and multi-band orthogonal frequency-division multiplexing (MB-OFDM) technologies for lunar rover navigation and communication in challenging terrains. Lunar missions pose unique challenges, such as signal propagation in the lunar environment, terrain elevation, and rover movement constraints. To address these challenges, we propose a hybrid communication and navigation system that leverages UWB technology for high-precision positioning and MB-OFDM for robust and high-throughput communication. We develop a realistic simulation framework that incorporates terrain elevation, obstacles, and rover movement constraints, along with a simple fading model for communication. Simulation results demonstrate the effectiveness of the proposed system in navigating lunar rovers to their target locations while maintaining reliable communication links with a lunar lander. A novel approach based on game theory for rover navigation is also presented. The study provides valuable insights into the design and optimization of communication and navigation systems for future lunar missions, paving the way for seamless integration of advanced terrestrial technologies in extraterrestrial environments.
引用
收藏
页数:19
相关论文
共 25 条
[11]   Simulation of Lunar Comprehensive Substructure With Fracture and Imaging of Later LPR Data From Chang'e-4 Mission [J].
Huo, Zhijun ;
Zhang, Ling ;
Zeng, Zhaofa ;
Li, Jing ;
Li, Lin ;
Liu, Cai .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[12]   An Oveiwiew of Ultra-Wide-Band Systems With MIMO [J].
Kaiser, Thomas ;
Zheng, Feng ;
Dimitrov, Emil .
PROCEEDINGS OF THE IEEE, 2009, 97 (02) :285-312
[13]  
Matthies L., 2022, P 2022 IEEE AER C AE, P1
[14]   A comprehensive standardized model for ultrawideband propagation channels [J].
Molisch, Andreas F. ;
Cassioli, Dajana ;
Chong, Chia-Chin ;
Emami, Shahriar ;
Fort, Andrew ;
Kannan, Balakrishnan ;
Karedal, Johan ;
Kunisch, Juergen ;
Schantz, Hans Gregory ;
Siwiak, Kazimierz ;
Win, Moe Z. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (11) :3151-3166
[15]  
Nikookar H., 2009, UWB Technologies, P117, DOI [10.1007/978-1-4020-6633-7_7, DOI 10.1007/978-1-4020-6633-7_7]
[16]  
Rahayu Y, 2008, 2008 IFIP INTERNATIONAL CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS NETWORKS, P298
[17]  
Russell S. J., 2009, Artificial intelligence: a modern approach., V3rd
[18]  
Sahinoglu Z, 2008, ULTRA-WIDEBAND POSITIONING SYSTEMS: THEORETICAL LIMITS, RANGING ALGORITHMS, AND PROTOCOLS, P1, DOI 10.1017/CBO9780511541056
[19]  
SCHOLTZ RA, 1993, COMMUNICATIONS ON THE MOVE - MILCOM 93: 1993 IEEE MILITARY COMMUNICATIONS CONFERENCE, CONFERENCE RECORD, VOLS 1-3, P447, DOI 10.1109/MILCOM.1993.408628
[20]  
Schulman J, 2017, Arxiv, DOI [arXiv:1707.06347, DOI 10.48550/ARXIV.1707.06347]