Determination of the Permittivity of Transmission Lines at Milli-Kelvin Temperatures

被引:2
|
作者
Stanley, Manoj [1 ]
Parker-Jervis, Rowan [1 ,2 ]
Skinner, James [1 ]
De Graaf, Sebastian [1 ]
Lindstrom, Tobias [1 ]
Cunningham, John E. [2 ]
Ridler, Nick M. [1 ]
机构
[1] Natl Phys Lab, Teddington TW11 0LW, England
[2] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, England
来源
IEEE ACCESS | 2023年 / 11卷
基金
英国工程与自然科学研究理事会;
关键词
Permittivity; Standards; Calibration; Transmission line measurements; Substrates; Scattering parameters; Propagation constant; Cryogenic temperatures; dilution refrigerator; effective relative permittivity; propagation constant; quantum circuits; transmission line; TRL calibration; vector network analyzer;
D O I
10.1109/ACCESS.2023.3286374
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many quantum technologies rely heavily on propagation of RF and microwave signals through devices at cryogenic temperatures, and detailed understanding of materials and signal propagation is therefore key to improving the performance of quantum circuits. The properties of dielectric substrate materials used for transmission lines (TLs) such as their permittivity need to be precisely determined to design high performance quantum integrated circuits. In this paper, we discuss a measurement technique for determining the effective permittivity of a TL at mK temperatures. The technique utilizes S-parameter measurements of multiple TLs to reliably extract the effective permittivity of the TL implemented in a substrate material. The technique is demonstrated using measured S-parameters of grounded co-planar waveguide (GCPW) at 296 K and 15 mK. The effective permittivity of the TL at 296 K and 15 mK are determined from measurements and compared. We observed the effective permittivity determinations at 15 mK to be approximately frequency independent and calculated the relative permittivity of Rogers RO4350B material at 15 mK to be 3.64. There is no significant deviation from this relative permittivity value with respect to manufacturer data and from measured data at 296 K.
引用
收藏
页码:60626 / 60634
页数:9
相关论文
共 50 条
  • [1] Cooling down MiniGRAIL to milli-Kelvin temperatures
    De Waard, A
    Gottardi, L
    Bassan, M
    Coccia, E
    Fafone, V
    Flokstra, J
    Karbalai-Sadegh, A
    Minenkov, Y
    Moleti, A
    Pallottino, GV
    Podt, M
    Pors, BJ
    Reinske, W
    Rocchi, A
    Shumack, A
    Srinivas, S
    Visco, M
    Frossati, G
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) : S465 - S471
  • [2] Vibrating coil magnetometer for milli-Kelvin temperatures
    Legl, S.
    Pfleiderer, C.
    Kraemer, K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (04):
  • [3] Superconducting RFTES Detector a Milli-Kelvin Temperatures
    Merenkov, Alexey, V
    Chichkov, Vladimir, I
    Ermakov, Andrey B.
    Ustinov, Alexey, V
    Shitov, Sergey, V
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (07)
  • [4] Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures
    Yoshifumi Tokiwa
    Sebastian Bachus
    Kavita Kavita
    Anton Jesche
    Alexander A. Tsirlin
    Philipp Gegenwart
    Communications Materials, 2
  • [5] Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures
    Tokiwa, Yoshifumi
    Bachus, Sebastian
    Kavita, Kavita
    Jesche, Anton
    Tsirlin, Alexander A.
    Gegenwart, Philipp
    COMMUNICATIONS MATERIALS, 2021, 2 (01)
  • [6] Fully Automated AC Susceptometer for Milli-Kelvin Temperatures in a DynaCool PPMS
    Amann, Andreas
    Nallaiyan, Manivannan
    Montes, Luis
    Wilson, Alan
    Spagna, Stefano
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2017, 27 (04)
  • [7] Optimal cooling configurations for quantum information processing at milli-kelvin temperatures
    Poole, T.
    Marsh, T.
    Matthews, A. J.
    CRYOGENICS, 2022, 126
  • [8] Phase Diffusion in Low-EJ Josephson Junctions at Milli-Kelvin Temperatures
    Lu, Wen-Sen
    Kalashnikov, Konstantin
    Kamenov, Plamen
    DiNapoli, Thomas J.
    Gershenson, Michael E.
    ELECTRONICS, 2023, 12 (02)
  • [9] Characterizing Scattering Parameters of Superconducting Quantum Integrated Circuits at Milli-Kelvin Temperatures
    Stanley, Manoj
    De Graaf, Sebastian
    Honigl-Decrinis, Teresa
    Lindstrom, Tobias
    Ridler, Nick M.
    IEEE Access, 2022, 10 : 43376 - 43386
  • [10] Characterizing Scattering Parameters of Superconducting Quantum Integrated Circuits at Milli-Kelvin Temperatures
    Stanley, Manoj
    De Graaf, Sebastian
    Honigl-Decrinis, Teresa
    Lindstrom, Tobias
    Ridler, Nick M.
    IEEE ACCESS, 2022, 10 : 43376 - 43386