GANDSE: Generative Adversarial Network-based Design Space Exploration for Neural Network Accelerator Design

被引:1
|
作者
Feng, Lang [1 ]
Liu, Wenjian [1 ]
Guo, Chuliang [2 ]
Tang, Ke [1 ]
Zhuo, Cheng [2 ,3 ]
Wang, Zhongfeng [1 ]
机构
[1] Nanjing Univ, 163 Xianlin Rd, Nanjing 210023, Peoples R China
[2] Zhejiang Univ, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China
[3] Key Lab Collaborat Sensing & Autonomous Unmanned, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Design space exploration; generative adversarial networks;
D O I
10.1145/3570926
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the popularity of deep learning, the hardware implementation platform of deep learning has received increasing interest. Unlike the general purpose devices, e.g., CPU or GPU, where the deep learning algorithms are executed at the software level, neural network hardware accelerators directly execute the algorithms to achieve higher energy efficiency and performance improvements. However, as the deep learning algorithms evolve frequently, the engineering effort and cost of designing the hardware accelerators are greatly increased. To improve the design quality while saving the cost, design automation for neural network accelerators was proposed, where design space exploration algorithms are used to automatically search the optimized accelerator design within a design space. Nevertheless, the increasing complexity of the neural network accelerators brings the increasing dimensions to the design space. As a result, the previous design space exploration algorithms are no longer effective enough to find an optimized design. In this work, we propose a neural network accelerator design automation framework named GANDSE, where we rethink the problem of design space exploration, and propose a novel approach based on the generative adversarial network (GAN) to support an optimized exploration for high-dimension large design space. The experiments showthat GANDSE is able to find the more optimized designs in negligible time compared with approaches including multilayer perceptron and deep reinforcement learning.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Network Intrusion Detection System based on Generative Adversarial Network for Attack Detection
    Das, Abhijit
    Balakrishnan, S. G.
    Pramod
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (11) : 757 - 766
  • [42] Restoration of damaged artworks based on a generative adversarial network
    Kumar, Praveen
    Gupta, Varun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40967 - 40985
  • [43] Stacked Generative Adversarial Network-Based Spectrum Maps Construction Method for Unmanned Aircraft Vehicles Swarms
    Chen, Yifei
    Du, Yihang
    Chen, Yong
    Zhang, Yu
    Lou, Dengke
    PROCEEDINGS OF THE 2024 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATION AND SENSOR NETWORKS, ICWCSN 2024, 2024, : 96 - 104
  • [44] iMetricGAN: Intelligibility Enhancement for Speech-in-Noise using Generative Adversarial Network-based Metric Learning
    Li, Haoyu
    Fu, Szu-Wei
    Tsao, Yu
    Yamagishi, Junichi
    INTERSPEECH 2020, 2020, : 1336 - 1340
  • [45] Generative adversarial network-based data augmentation for improving hypoglycemia prediction: A proof-of-concept study
    Seo, Wonju
    Kim, Namho
    Park, Sung-Woon
    Jin, Sang -Man
    Park, Sung -Min
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 92
  • [46] A generative adversarial neural network model for industrial boiler data repair
    Hu, Xiaobin
    Li, Guoqiang
    Niu, Peifeng
    Wang, Jianmei
    Zha, Linlin
    APPLIED SOFT COMPUTING, 2021, 104
  • [47] Mixing and Matching Elements for Intelligent Fashion Design: A Generative Adversarial Network With Structure and Texture Disentanglement
    Yan, Han
    Zhang, Haijun
    Shi, Jianyang
    Ma, Jianghong
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 358 - 370
  • [48] Rainfall prediction using generative adversarial networks with convolution neural network
    Venkatesh, R.
    Balasubramanian, C.
    Kaliappan, M.
    SOFT COMPUTING, 2021, 25 (06) : 4725 - 4738
  • [49] Generative Design of Outdoor Green Spaces Based on Generative Adversarial Networks
    Chen, Ran
    Zhao, Jing
    Yao, Xueqi
    Jiang, Sijia
    He, Yingting
    Bao, Bei
    Luo, Xiaomin
    Xu, Shuhan
    Wang, Chenxi
    BUILDINGS, 2023, 13 (04)
  • [50] Discovering Pareto-Optimal Magnetic-Design Solutions via a Generative Adversarial Network
    Baldan, Marco
    Di Barba, Paolo
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (09)