The promise and reality of machine-learning models in kidney transplantation

被引:0
|
作者
Schold, Jesse D. [1 ,2 ,3 ]
机构
[1] Univ Colorado Anschutz Med Campus, Dept Surg, Aurora, CO USA
[2] Univ Colorado Anschutz Med Campus, Colorado Sch Publ Hlth, Dept Epidemiol, Aurora, CO USA
[3] Univ Colorado Anschutz Med Campus, Dept Surg, 1635 Aurora Court,Floor 7, Aurora, CO 80045 USA
关键词
SURVIVAL BENEFIT; DIALYSIS; TIME;
D O I
10.1016/j.kint.2023.02.008
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
There have been numerous advances in statistical methods and computing technologies over the past decades, including the use machine-learning models. In the current study, Truchot et al. rigorously evaluated the performance of different machine-learning models compared with traditional Cox proportional hazard models. Results of the study indicated that a Cox model had equivalent superior performance than machine-learning models and can be on for predicting graft survival in kidney transplantation.
引用
收藏
页码:835 / 836
页数:2
相关论文
共 50 条
  • [1] Certified Machine-Learning Models
    Damiani, Ernesto
    Ardagna, Claudio A.
    SOFSEM 2020: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2020, 12011 : 3 - 15
  • [2] Machine-Learning Studies on Spin Models
    Shiina, Kenta
    Mori, Hiroyuki
    Okabe, Yutaka
    Lee, Hwee Kuan
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] Machine-Learning Studies on Spin Models
    Kenta Shiina
    Hiroyuki Mori
    Yutaka Okabe
    Hwee Kuan Lee
    Scientific Reports, 10
  • [4] Risk Prediction Models for Graft Failure after Liver Transplantation: A Machine-Learning Approach
    Kwong, Allison J.
    O'Connell, Chloe
    Kanzawa, Mia
    Hufker, Katherine
    Lindsay, Neil
    Kim, W. Ray
    HEPATOLOGY, 2018, 68 : 668A - 669A
  • [5] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [6] Synchronization of chaotic systems and their machine-learning models
    Weng, Tongfeng
    Yang, Huijie
    Gu, Changgui
    Zhang, Jie
    Small, Michael
    PHYSICAL REVIEW E, 2019, 99 (04)
  • [7] Machine-learning models for combinatorial catalyst discovery
    Landrum, GA
    Penzotti, J
    Putta, S
    COMBINATORIAL AND ARTIFICIAL INTELLIGENCE METHODS IN MATERIALS SCIENCE II, 2004, 804 : 301 - 306
  • [8] Machine-learning models for combinatorial catalyst discovery
    Landrum, GA
    Penzotti, JE
    Putta, S
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (01) : 270 - 277
  • [9] The Importance of Interpretability and Validations of Machine-Learning Models
    Yamasawa, Daisuke
    Ozawa, Hideki
    Goto, Shinichi
    CIRCULATION JOURNAL, 2024, 88 (01) : 157 - 158
  • [10] Machine-Learning for Primary Graft Dysfunction in Lung Transplantation
    Fessler, J.
    Vallee, A.
    Gouy-Pailler, C.
    Davignon, M.
    Fischler, M.
    Le Guen, M.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2021, 40 (04): : S380 - S380