Existence and stability of traveling waves for doubly degenerate diffusion equations

被引:1
作者
Huang, Rui [1 ]
Liang, Zhanghua [1 ]
Wang, Zhuangzhuang [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
关键词
Doubly degenerate; Traveling waves; Existence; Stability; GLOBAL STABILITY; FRONTS; BEHAVIOR;
D O I
10.1007/s00033-023-01938-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence and stability of traveling waves for doubly degenerate diffusion equations, where the spatial diffusion operator is of the form partial derivative(x)(|partial derivative(x)u(m)|(p-2)partial derivative(x)u(m)) with m > 0 and p > 1. It is proved that, for the slow diffusion case m(p- 1) > 1, there exists a minimum wave speed c(*), such that the problem admits smooth traveling waves when wave speed c > c(*) and semi-finite traveling waves with critical wave speed c = c* while, for the fast diffusion case 0 < m(p - 1) < 1, there is no nonnegative traveling wave solution. By the weighted energy method, we also show the L-1-stability of the traveling waves.
引用
收藏
页数:23
相关论文
共 37 条
[21]  
Li GR, 2008, MATH BIOSCI ENG, V5, P85
[22]   On the diffusive Nicholson's blowflies equation with nonlocal delay [J].
Li, W. -T. ;
Ruan, S. ;
Wang, Z. -C. .
JOURNAL OF NONLINEAR SCIENCE, 2007, 17 (06) :505-525
[23]   Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects [J].
Liang, D ;
Wu, J .
JOURNAL OF NONLINEAR SCIENCE, 2003, 13 (03) :289-310
[24]   EXPONENTIAL STABILITY OF NONMONOTONE TRAVELING WAVES FOR NICHOLSON'S BLOWFLIES EQUATION [J].
Lin, Chi-Kun ;
Lin, Chi-Tien ;
Lin, Yanping ;
Mei, Ming .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1053-1084
[25]  
Lindqvist Peter., 2006, NOTES P LAPLACE EQUA
[26]   Global stability of traveling waves for nonlocal time-delayed degenerate diffusion equation [J].
Liu, Changchun ;
Mei, Ming ;
Yang, Jiaqi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 306 :60-100
[27]   Traveling waves for non-local-delayed diffusion equations via auxiliary equations [J].
Ma, Shiwang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (02) :259-277
[28]   GLOBAL STABILITY OF MONOSTABLE TRAVELING WAVES FOR NONLOCAL TIME-DELAYED REACTION-DIFFUSION EQUATIONS [J].
Mei, Ming ;
Ou, Chunhua ;
Zhao, Xiao-Qiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) :2762-2790
[29]  
Mei M, 2009, J DIFFER EQUATIONS, V247, P495, DOI 10.1016/j.jde.2008.12.026
[30]  
SCHAAF KW, 1987, T AM MATH SOC, V302, P587