Existence and stability of traveling waves for doubly degenerate diffusion equations

被引:1
作者
Huang, Rui [1 ]
Liang, Zhanghua [1 ]
Wang, Zhuangzhuang [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
关键词
Doubly degenerate; Traveling waves; Existence; Stability; GLOBAL STABILITY; FRONTS; BEHAVIOR;
D O I
10.1007/s00033-023-01938-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence and stability of traveling waves for doubly degenerate diffusion equations, where the spatial diffusion operator is of the form partial derivative(x)(|partial derivative(x)u(m)|(p-2)partial derivative(x)u(m)) with m > 0 and p > 1. It is proved that, for the slow diffusion case m(p- 1) > 1, there exists a minimum wave speed c(*), such that the problem admits smooth traveling waves when wave speed c > c(*) and semi-finite traveling waves with critical wave speed c = c* while, for the fast diffusion case 0 < m(p - 1) < 1, there is no nonnegative traveling wave solution. By the weighted energy method, we also show the L-1-stability of the traveling waves.
引用
收藏
页数:23
相关论文
共 37 条
[1]  
Aronson D.G., 1980, PROC ADV SEMINAR DYN
[2]  
Aronson D.G., 1986, Lecture Notes in Math
[3]   TRAVELING WAVE SOLUTIONS FOR SOME NON-LINEAR DIFFUSION-EQUATIONS [J].
ATKINSON, C ;
REUTER, GEH ;
RIDLERROWE, CJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (06) :880-892
[4]   The Fisher-KPP problem with doubly nonlinear diffusion [J].
Audrito, Alessandro ;
Luis Vazquez, Juan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (11) :7647-7708
[5]   Variational Characterization of the Speed of Reaction Diffusion Fronts for Gradient Dependent Diffusion [J].
Benguria, Rafael D. ;
Depassier, M. Cristina .
ANNALES HENRI POINCARE, 2018, 19 (09) :2717-2726
[6]   Stability of non-monotone critical traveling waves for reaction diffusion equations with time-delay [J].
Chern, I-Liang ;
Mei, Ming ;
Yang, Xiongfeng ;
Zhang, Qifeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (04) :1503-1541
[7]   Travelling wave behaviour for a porous-Fisher equation [J].
De Pablo, A ;
Sanchez, A .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1998, 9 :285-304
[8]   THE BALANCE BETWEEN STRONG REACTION AND SLOW DIFFUSION [J].
DEPABLO, A ;
VAZQUEZ, JL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (02) :159-183
[9]   TRAVELING WAVES AND FINITE PROPAGATION IN A REACTION-DIFFUSION EQUATION [J].
DEPABLO, A ;
VAZQUEZ, JL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) :19-61
[10]  
Di Benedetto E., 1993, Degenerate Parabolic Equations, DOI 10.1007/978-1-4612-0895-2