Estimating Leaf Area Index and biomass of sugarcane based on Gaussian process regression using Landsat 8 and Sentinel 1A observations

被引:11
作者
Abebe, Gebeyehu [1 ,2 ]
Tadesse, Tsegaye [3 ]
Gessesse, Berhan [2 ,4 ]
机构
[1] Debre Berhan Univ, Dept Nat Resources Management, Debre Berhan, Ethiopia
[2] Ethiopian Space Sci & Technol Inst, Dept Remote Sensing, Addis Ababa 33679, Ethiopia
[3] Univ Nebraska, Natl Drought Mitigat Ctr, Lincoln, NE USA
[4] Kotebe Metropolitan Univ, Dept Geog & Environm Studies, Addis Ababa, Ethiopia
关键词
Biomass; Gaussian process regression; Landsat; 8; LAI; relevance vector machine; Sentinel; 1A; VEGETATION BIOPHYSICAL PARAMETERS; WINTER-WHEAT; SPECTRAL INDEXES; IRRIGATED AGRICULTURE; HYPERSPECTRAL IMAGERY; ABOVEGROUND BIOMASS; WOFOST MODEL; CORN; RETRIEVAL; YIELD;
D O I
10.1080/19479832.2022.2055157
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Accurate estimation of crop parameters, such as Leaf Area Index (LAI) and biomass over large areas using remote sensing techniques, is crucial for monitoring crop growth and yield prediction. In this study, a Gaussian Process Regression (GPR) method was developed to estimate LAI and biomass values of sugarcane during growth season using optical and synthetic-Aperture Radar (SAR) data fusion. Predicting LAI on an independent test data set using the GPR and the combined optical and SAR indices provided better prediction accuracies of LAI; with the GPR based on radial basis function (Root Mean Square Error [RMSE] = 0.34, Mean Absolute Error [MAE] = 0.28 and Mean Absolute Percentage Error [MAPE] = 10.5%) and polynomial function (RMSE = 0.42, MAE = 0.31 and MAPE = 12.58%), respectively. The test results of sugarcane biomass also showed that the GPR (poly) produced the highest statistical results (RMSE = 2.45 kg/m(2), MAE = 1.72 kg/m(2), MAPE = 8.1%) using the combined indices. The results suggest that the crop biophysical retrieval based on optical and SAR data fusion and GPR proposed in this study could improve LAI and biomass estimation that could help for effective crop growth monitoring and mapping applications.
引用
收藏
页码:58 / 88
页数:31
相关论文
共 82 条
[1]   Assimilation of leaf Area Index from multisource earth observation data into the WOFOST model for sugarcane yield estimation [J].
Abebe, Gebeyehu ;
Tadesse, Tsegaye ;
Gessesse, Berhan .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (02) :698-720
[2]   Estimation of Canopy Biomass Components in Paddy Rice from Combined Optical and SAR Data Using Multi-Target Gaussian Regressor Stacking [J].
Alebele, Yeshanbele ;
Zhang, Xue ;
Wang, Wenhui ;
Yang, Gaoxiang ;
Yao, Xia ;
Zheng, Hengbiao ;
Zhu, Yan ;
Cao, Weixing ;
Cheng, Tao .
REMOTE SENSING, 2020, 12 (16)
[3]  
[Anonymous], 2016, REMOTE SENS-BASEL, DOI DOI 10.3390/RS8060520
[4]   Global synthesis of leaf area index observations: implications for ecological and remote sensing studies [J].
Asner, GP ;
Scurlock, JMO ;
Hicke, JA .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2003, 12 (03) :191-205
[5]   Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale [J].
Attarzadeh, Reza ;
Amini, Jalal ;
Notarnicola, Claudia ;
Greifeneder, Felix .
REMOTE SENSING, 2018, 10 (08)
[6]   Multitemporal Observations of Sugarcane by TerraSAR-X Images [J].
Baghdadi, Nicolas ;
Cresson, Remi ;
Todoroff, Pierre ;
Moinet, Soizic .
SENSORS, 2010, 10 (10) :8899-8919
[7]   Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island [J].
Baghdadi, Nicolas ;
Boyer, Nathalie ;
Todoroff, Pierre ;
El Hajj, Mahmoud ;
Begue, Agnes .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (08) :1724-1738
[8]   Remote sensing for irrigated agriculture: examples from research and possible applications [J].
Bastiaanssen, WGM ;
Molden, DJ ;
Makin, IW .
AGRICULTURAL WATER MANAGEMENT, 2000, 46 (02) :137-155
[9]   Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring [J].
Campos-Taberner, Manuel ;
Javier Garcia-Haro, Francisco ;
Camps-Valls, Gustau ;
Grau-Muedra, Goncal ;
Nutini, Francesco ;
Crema, Alberto ;
Boschetti, Mirco .
REMOTE SENSING OF ENVIRONMENT, 2016, 187 :102-118
[10]   Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression [J].
Cho, Moses Azong ;
Skidmore, Andrew ;
Corsi, Fabio ;
van Wieren, Sipke E. ;
Sobhan, Istiak .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2007, 9 (04) :414-424