State estimation-based parameter identification for a class of nonlinear fractional-order systems

被引:1
|
作者
Oliva-Gonzalez, Lorenz Josue [1 ]
Martinez-Guerra, Rafael [1 ]
机构
[1] CINVESTAV IPN, Dept Control Automat, Ave IPN 2508, Mexico City 07360, Mexico
关键词
Robust parameter identification method; Nonlinear fractional-order systems; Mittag-Leffler Boundedness; On-line parametric identification; Measurement noise; SYNCHRONIZATION;
D O I
10.1007/s11071-024-09339-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Parametric identification is an important part of system theory since knowledge of the parameters allows the analysis and control of the system. The aim of this paper is to propose a novel robust (against measurement noise) parameter identification method for a class of nonlinear fractional-order systems. In order to solve the parametric identification we carry out this problem to a state estimation problem, we introduce a Fractional Algebraic Identifiability (FAI) property which allows to represent the system parameters as a function of the inputs and outputs of the system, this parameter identification method provides an on-line identification process (while the system is operating), we also propose a fractional-order differentiator which allows to reduce the effect of measurement noise as well as to provide the estimation of a fractional-order derivative of the system output. Moreover, we use the Mittag-Leffler boundedness to demonstrate the convergence of this method, a different approach for this stability analysis method is given in this paper. Finally, we illustrate the accuracy and robustness of our proposed method by means of the parametric identification of two nonlinear fractional-order systems: a time-varying nonlinear fractional-order system and a nonlinear fractional-order mathematical model of a simple pendulum.
引用
收藏
页码:6379 / 6402
页数:24
相关论文
共 50 条
  • [21] STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    Sioud, Khaled
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1309 - 1321
  • [22] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [23] Parameter Identification of Fractional-Order Discrete Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    Peng, Dong
    ENTROPY, 2019, 21 (01):
  • [24] Parameter estimation method for separable fractional-order Hammerstein nonlinear systems based on the on-line measurements
    Wang, Junwei
    Xiong, Weili
    Ding, Feng
    Zhou, Yihong
    Yang, Erfu
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 488
  • [25] Stability and stabilization of a class of fractional-order nonlinear systems for
    Huang, Sunhua
    Wang, Bin
    NONLINEAR DYNAMICS, 2017, 88 (02) : 973 - 984
  • [26] Stability Analysis of a Class of Nonlinear Fractional-Order Systems
    Wen, Xiang-Jun
    Wu, Zheng-Mao
    Lu, Jun-Guo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2008, 55 (11) : 1178 - 1182
  • [27] Stability analysis on a class of nonlinear fractional-order systems
    Wang, Zhiliang
    Yang, Dongsheng
    Zhang, Huaguang
    NONLINEAR DYNAMICS, 2016, 86 (02) : 1023 - 1033
  • [28] Stabilization Conditions for a Class of Fractional-Order Nonlinear Systems
    Huang, Sunhua
    Wang, Bin
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (05):
  • [29] Stability analysis on a class of nonlinear fractional-order systems
    Zhiliang Wang
    Dongsheng Yang
    Huaguang Zhang
    Nonlinear Dynamics, 2016, 86 : 1023 - 1033
  • [30] Global Stabilization for a class of nonlinear fractional-order systems
    Liu, Taide
    Wang, Feng
    Lu, Wanchun
    Wang, Xuhuan
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2019, 10 (01)